Vision Res. Vol. 24, No. 4, pp. 347-355, 1984
Printed in Great Britain. All rights reserved

0042-6989 §4 $3.00 +0.00
Copyright 1984 Pergamon Press Ltd

QUALITY OF THE PRIMATE PHOTORECEPTOR LATTICE
AND LIMITS OF SPATIAL VISION

Joy HIrRsCH

Yale University School of Medicine. Department of Ophthalmology and Visual Science. New Haven.
CT 06510, US.A.

and

Ro~ HyLtOoN
Columbia University, Department of Physics, NY (0027, U.S.A.

{Received || April 1983: in revised form 23 July 1983)

Abstract—Quantitative analysis of a primate photoreceptor lattice shows that the foveal lattice is a highly
regular hexagonal structure with a positional correlation length of at least 130 photoreceptors. This result
indicates that the photoreceptor lattice is not sufficiently disordered to prevent aliasing in the fovea. but
rather could provide the metric with which the visual system determines spatial separation even for tasks

involving hyperacuity.

Photoreceptor lattice Hyperacuity Aliasing

INTRODUCTION

There is a growing recognition that the photoreceptor
lattice must play a fundamental role in spatial vision
(Williams and Collier, 1983; Miller and Bernard,
1983; Yellott, 1982; Hirsch and Hylton, 1982). The
question of how accurately the photoreceptors are
placed in the lattice then becomes of considerable
importance, and two quite different views of the
consequences of imperfections in the lattice have been
proposed. We have recently presented evidence sug-
gesting that spatial intervals are measured by count-
ing points in a cortical lattice which is derived from
the photoreceptor lattice. From this point of view, the
photoreceptor lattice is the basic geometrical instru-
ment for measuring distances and any randomness in
the spacing of photoreceptors will limit the accuracy
with which the measurements can be made.

A conflicting view suggesting that randomness in
the photoreceptor lattice is desirable as an anti-
aliasing mechanism has also recently been proposed
(Yellott, 1982). Actually this argument requires not
random (unknown) errors in position but rather an
irregular lattice formed of photoreceptors whose
individual positions must be accurately known. If the
photoreceptor positions had truly random (un-
known) errors large enough to prevent aliasing, seri-
ous degradation of the high frequency content of an
image would occur (French et al., 1977). Thus if the
photoreceptor lattice were highly disordered one
would be left with the question of exactly how the
positions of the individual photoreceptors were deter-
mined by the visual system.

To study the question of photoreceptor lattice
quality we have analyzed the foveal cone mosaic from
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an adult primate (Macaca fascicularis) using an
electron micrograph of a section taken tangent to the
external limiting membrane (ELM) close to its scleral
side (Miller, 1979). Our analysis is based on mea-
surements of the positions of the centers of about 100
cone inner segments in the central fovea (Fig. 1).

This lattice was chosen for analysis rather than that
published by Polyak (1957) and studied by Yellott
(1982) because the Polyak lattice is a photograph of
a whole mount that appears to be focused near the
level of the outer segments. The outer segment lo-
cations are irrelevant for positional analysis since the
outer segments are basically light guides for photons
that enter the cones at the inner segments. The outer
segments may also be subject to substantial positional
distortion since they are embedded in a semifluid
extracellular matrix. In contrast, the positions of the
inner segments are fixed at the ELM by desmosomes,
after which they taper and increase in refractive index
to become light guides, providing the mechanism by
which the cones form separate optical channels. Thus
the inner segment at the ELM is the spatial aperture
of the cone for its photon catching function and its
position specifies cone location for the purpose of
image reconstruction. We further note that the Miller
lattice displays clearly higher spatial quality than the
Polyak lattice. Given the unlikelihood of accidentally
introducing order into an initially disordered lattice,
the more orderly lattice must be more representative
of the intact retina.

RESULTS

Figure 2(a) is a histogram of the distances between
the centers of all pairs of photoreceptors in our
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Fig. 2. (a) Histogram of distances between all pairs of
photoreceptors in the sample shown in Fig. |, The first peak
shows the distribution of distances between the centers of
nearest neighbors. (b) Histogram of all angles between the
horizontal axis and the lines connecting the center of each
photoreceptor to the center of its nearest neighbors. The six
peaks demonstrate a high quality hexagonal lattice.

sample. There is a very distinct peak corresponding
to the nearest neighbor distance (which we call ring
1). The r.m.s. width of the peak (standard deviation
of the nearest neighbor distance) is 0.077 times the
mean separation between nearest neighbor photo-
receptors and drops to 0.070 when the contribution
from our measurement error is removed. This is
comparable to the maximum tolerable spacing error
(0.078) estimated below from human psychophysical
results.

Figure 2(b) shows a histogram of the angles be-
tween the horizontal axis and the lines connecting the
center of each photoreceptor to the center of its
nearest naighbors where nearest neighbors are
defined as any pair whose center to center separation
is less than the maximum nearest neighbor distance
shown in Fig. 2(a). This figure shows a well defined
set of directions with hexagonal symmetry {607 spac-
ing) which determine the orientation of the lattice,
and is consistent with previous qualitative obser-
vations of retinal structure (Borwein er afl, 1980;
Polyak, 1957). (It has been pointed out to us that the
packing of the lattice approximates a hexagonal
tessellation with the centers of the receptors forming
a triangular lattice.)

By specifying the mean pearest neighbor distance
and orientation of the lattice we have fully deter-
mined the basis vectors for the lattice. (See Kittel.
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1971, for a discussion of crystal structure.} We then
make the following calculations. For each photo-
receptor we take its center to be the origin and use
the nearest neighbor distance cut determined from
Fig. 2(a) to locate its nearest neighbors. We then
measure the difference between expected and actual
positions for the photoreceptors just assigned to the
ring of nearest neighbors assuming a perfect hexago-
nal lattice with the basis vectors determined above.
The nearest neighbor distance cut is then used aguin
to move out from the nearest neighbors to the ring
of second nearest neighbors and again we measure
the error in actual position versus the expected
position for a perfect hexagonal lattice centered on
the original photoreceptor. We continue this process
until all photoreceptors have been assigned to some
ring and their errors computed. The process is then
repeated with a new photoreceptor as the origin,

Figure 3 shows a graph of the variance (mean
square error} in relative position as a function of ring
number. The data have been normalized so that the
mean nearest neighbor photoreceptor distance {ring
Iy is LO. We plot separately the components of
variance parallel and perpendicular to the line which
joined the photoreceptor at the origin and the one
being tested. The parallel component corresponds to
errors in separation while the perpeadicular com-
ponent corresponds to errors in orientation, The
variance increases linearly with distance {ring num-
ber), consistent with accumulating uncorrelated er-
rors, and the parameters of the best fit straight lines
are given in Table |. Measurement error and jitter in
the lattice {discussed below) would lead to a positive
¥ intercept and appear to be small
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Fig. 3. Variance between expected and actual positions of
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psychophysical estimate of the total parallel variance in
spatial interval measurement by humans.



Fig. 1. Cone inner segments at the central fovea in the retina of the monkey, Macaca fascicularis, shown
in a photograph of a 1 um thick section tangent to and on the scleral side of the external limiting
membrane. Center-to-center distance of cones is 3 um. From Miller (1979) with permission.
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Table 1. Parameters of best fit lines variance® vs ring number

Variance Slope

N

Uncorrecied
Paraliel
Perpendicular

0.0036 = 0.0002
0.0075 = 0.0003

Intercept v d.f.  Conf.
0.0001 =0.0006  8.89 6 0.18
0.0021 = 0.0009 260 ] 0.86

*Variance is expressed in units of mean inter-neighbor distance squared.

If we define the positional correlation length of the
lattice as the distance between two lattice points at
which the r.m.s. spacing error equals the lattice
spacing, then the correlation length for the parallel
component is 178 + 7 photoreceptors and for the
perpendicular component the correlation length is
133 + 5 photoreceptors.*

LATTICE QUALITY AND LIMITS OF SPATIAL
RESOLUTION

Assuming that a Macaca fascicularis lattice is
comparable to a human lattice, these anatomical
results can be compared to human psychophysical
results. We have found that changes (As) in a spatial
interval s can be correctly discriminated by human
observers 75% of the time when As ~ 0.025x5 for a
very large range of s, L.e. from greater than 1 deg of
visual angle to at least 0.04 deg. (See Hirsch and
Hylton, 1982 for details of the measurement pro-
cedure.) Assuming a normal response distribution,
75°%, correct corresponds to (.68 standard deviations,
and the r.m.s. error is 0.025/0.68 or 0.037 times s.
Since the psychophysical result is basically a measure
of the total parallel (separation) error, it provides an
upper limit for the parallel component of photo-
receptor spacing error if the photoreceptor lattice is
considered as the metric with which spatial intervals
are measured.t For the smallest value of 5 we have
been able to test {0.04 deg) the r.m.s. error As was
about 0.0013 deg or about one sixth of the center-to-
center photoreceptor spacing in the fovea. Since this
value of s corresponds to a span of about 4.5
photoreceptors, and we naively expect that spacing
errors will accumulate proportionally to the square
root of distance, the fundamental spacing error be-
tween neig}wxboring photoreceptors must not exceed
0.037 »/4.5 = 0.078 times the average photoreceptor
spacing. This psychophysical limit in humans is
clearly of the same order as the primate lattice error
measured above (0.070).

This argument is shown graphically in Fig. 3 where
we have plotted the square of the psychophysical

*We do not understand why the perpendicular variance is
greater than the parallel. We suspect it is related to the
distortions discussed later, Note that correlation length
is a measure of lattice quality and is not related to any
actual length.

tWe make the assumption that there is no mechanism for
measuring the true spatial positions of photoreceptors
so that errors in lattice spacing cannot be corrected for.
We also assume there is no averaging along the
orthogonal dimension (Westheimer and McKee, 1977).

limit As = 0.037 s (dashed line) along with the anat-
omical results. The parallel variance intersects the
psychophysical limit slightly below 4 photoreceptors
indicating that the photoreceptor spacing error is less
than the psychophysically measured total error for
spatial separations greater than 4 photoreceptors.
That is, the psychophysical measurements do not
require a positional accuracy exceeding the photo-
receptor lattice accuracy measured above for sepa-
rations greater than four photoreceptors. Note that
the psychophysical limit is only established for sepa-
rations greater than about 4.5 photoreceptors.

ALIASING

We now turn our attention to the question of
aliasing. Figure 4 shows the Fourier transform of our
lattice sample along the direction of one of the
reciprocal lattice basis vectors; the other basis direc-
tions are quite similar. The frequency axis has been
normalized to 2/\/5 x 1/d, which is the frequency at
which the first tooth of the alias comb should occur
for this orientation on a hexagonal lattice. There is
clearly quite severe aliasing, with the first two aliases
having amplitudes of 0.8 and 0.5 respectively.

Now consider the conditions necessary to prevent
aliasing, which depend both on the degree of disorder
in the lattice and the size of the reconstruction
window, i.e. the number of sample points available
simultaneously for reconstructing the image at a
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Fig. 4. Fourier transform of the lattice sample. The fre-
quency axis has been normalized to the first frequency at
which aliasing is expected.
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particular point. (We consider only the one dimen-
sional case). Aliasing occurs because a sinusoid of
frequency f and a sinusoid of frequency [+ l/d.
where 4 15 the lattice spacing. have exactly the same
values at the sample points. That is. at the sample
- A

noints given
poinis give

expli2n (f + l/d)xy]
= expli2nfxJexp[i2n (1/d)(Nd)] = exp[i2nfx,]

and hence the two frequencies are indistinguishable
after sampling. However, if there is an accumulated
spacing error A(N) over N photoreceptors, the values
at xy = Nd + A(N) for the two sinusoids are

expli2rfx,]

and
expli2nfxy] exp [i2n A(N)/d]

respectively, where the effect of the accumulated
spacing error has been to introduce an effective
accumulated phase shift A{N)/d whose r.m.s. value
increases with N. Assume a phase shift of half a cycle
is necessary to break the coherence and allow the two
frequencies to be distinguished, a condition in reason-
able agreement with detailed calculations. Then to
prevent aliasing we must have o(N)>d/2 where
o(N) is the r.m.s. value of A(N).

Extrapolating the results above shows that the
parallel variance ¢*(N) will not reach d%/4 for N less
than 45. Thus to avoid aliasing we must always use
a sample length of at least 45 photoreceptors, which
corresponds to a reconstruction window containing
over 20 complete cycles of sinc (x). We regard such
a long range interpolation (nearly 0.4 deg) as very
unlikely.

SOURCES OF ERROR AND LIMITATIONS OF THE
ANALYSIS

While these results establish that the photoreceptor
lattice is highly accurate, there is a potential problem
with the data that may have caused the degree of
error to be severely overestimated. Close inspection
of the lattice in Fig. 1 leaves the impression that the
lines formed by nearest neighbor photoreceptors are
not perfectly straight but rather possess a slight
degree of curvature. Numerical analysis confirms that
this is indeed the case and that the lattice is system-
atically distorted. Further, these systematic errors
contribute substantially to the increase in variance
with distance shown in Fig. 3. If these distortions
were introduced in the preparation process they

*We find that after correcting for curvature the variance
vs ring number function is still comsistent with a
straight line, but the y-intercept is no longer consistent
with zero. This could be interpreted as the sum of a
constant variance due to jitter in the lattice plus
accumulating uncorrelated errors. However, the exact
values of the slope and intercept depend significantly on
the form of the curvature correction, and so we adopt
the conservative approach and apply no corrections.

Jov HirscH and RoN HyiTtos

should be removed from the data, and one might even
argue that, regardless of origin, systematic errors are
correctable and should not be included in this anal-
ysis.

We have attempted to correct for this problem in
a number of ways and conciude thai systematic
distortion accounts for roughly half of the slope in
Fig. 3 while decreasing the ring | variances only
slightly. (Jitter in the lattice is then significant.) We
estimate that with the systematic distortions re-
moved, the correlation lengths may be as much as 400
for the parallel and 200 for the perpendicular com-
ponents respectively, with the psychophysical limit
intersecting the parallel variance at about 2.5 photo-
recepiors. Thus we believe the above estimates of
correlation length are conservative.*

We note that the results presented here apply
directly to measurements over spatial intervals less
than some tens of photoreceptors since we only
analyzed a section of about 10 x 10 photoreceptors.
However, the psychophysical measurement of the
total variance rises as the square of separation (ie.
the r.m.s. error 1s a constant fraction of the distance
being measured) while the photoreceptor position
variance is only rising linearly over the section we
analyzed. As long as the photoreceptor variance rises
less rapidly with distance than the psychophysical
variance over long spans the error contributed by
photoreceptor spacing will be negligible. (The mea-
surement of large distances actually requires consid-
erations that are beyond the scope of this paper.) We
also assume inhomogeneities in the lattice are unim-
portant, perhaps requiring that the positionn mea-
surement always be done in a sufficiently restricted
region of the retina.

OTHER FORMS OF IMAGING ERROR

In addition to the kinds of random spacing errors
discussed above which lead to a finite correlation
length we can distinguish two other kinds of random-
ness. The first is jitter in the lattice which occurs if
each point in perfect lattice is given a random devi-
ation from its expected position. Since jitter does not
build up over distance it will not contribute to the
slope of the variance vs distance function but only
contributes to the y intercept and appears small when
the curvature of the lattice is néglécted (see Table 1).
The other form of error we consider is topological
disorder in the mapping from retina to cortex, which
is quite distinct from the essentially geometric disor-
der considered previously. If we think of the cortex
as receiving a bundle of fibers originating -from the
retina with each fiber identified only by a number,
then topological disorder occurs when a sequentially
numbered sequence of fibers is not monotonic in
space due to random cris-crosses in the fiber bundle.
This effectively causes the apparent positions of two
photoreceptors to be erroneously interciranged. Such
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mapping errors could cause severe problems for
image reconstruction. but given the long correlation
lengths estimated for the retina there is probably no
significant topological disorder at the retinal end of
the bundle. and it is conceivable that in general such
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visual pathways (Rakic and Riley, 1983).

IMPLICATIONS OF ORDERED AND DISORDERED
LATTICES

In this section we consider the implications of
ordered and disordered lattices for vision. Perhaps
the most significant aspect of a highly ordered lattice
is that it is capable of providing the geometric
information necessary for accurately measuring spa-
tial intervals. As we have shown above, the primate
photoreceptor lattice appears to be sufficiently regu-
lar to serve as the metric for spatial vision, even for
tasks involving hyperacuity, at least over spans of
tens of photoreceptors. That is, the distance between
two photoreceptors is determined to sufficient accu-
racy for all spatial tasks simply by counting the
number of intervening photoreceptors. Indeed, recent
psychophysical results have been interpreted as evi-
dence that the human visual system does in fact
measure spatial intervals by counting points in a
neural lattice that is derived from the photoreceptor
lattice (Hirsch and Hylton, 1982, 1984), and the
results presented here suggest that such a scheme is
feasible even for the most demanding visual tasks. In
the absence of an orderly latiice to provide geo-
metrical information, one would have to postulate
the existence of some cortical mechanism capable of
determining the distances between all pairs of photo-
receptors to the required accuracy, which is not
trivial. The existence of an orderly lattice would
obviate the need for such a complicated spatial
calibration system.

Another potentially advantageous property of a
highly regular lattice is that its topological order
greatly simplifies the establishment of maps between
retina and cortex, whether one-to-one or more com-
plicated. With sufficient regularity at both the retina
and cortex, structures at each location could develop
independently but achieve congruence relatively eas-
ily at some later time. In the simple fiber bundle
analogy presented above, this basically requires that
the optic nerves maintain nearest-neighbor re-
lationships, which is far simpler than requiring that
each fiber must separately seek appropriate end
points, or postulating a cortical mechanism capable
of an arbitrarily complicated unscrambling. We have
recently reported that the orientation dependence of
hyperacuity contains a component with hexagonal
symmetry, which strongly suggests that the hexago-
nal packing of photoreceptors is preserved in the
cortical mechanisms that underlie hyperacuity (Hirsch
and Hylton, 1984),

s
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A final point, which actually does not require a
very high degree of geometrical accuracy, is that
hexagonal lattices have a higher packing density for
round objects than square or random lattices. This
has two advantages, as noted by Snyder and Miller

(1977). First. the increased number of sample nnnﬂc
(iY77} rirst, tne increases numoer of sampic

per unit area leads to an increase in the average
Nyquist frequency. Second. the photoreceptors are
able to cover a larger portion of the total area,
maximizing the photon catch. It is also worth noting
that the orientation anisotropies for a hexagonal
lattice are actually fairly small and substantially
smaller than for a square lattice since the hexagonal
lattice is considerably rounder. [The orientation an-
45 Y =0.29 fvr n

vl oa

isotropy is characterized by | ~ cos(
square lattice and | — cos(30°) = 0.1
nal lattice, considerably smaller.]

Now consider the case of a disordered lattice.
Yellott (1982) has argued that a disordered lattice has
the significant advantage of suppressing aliasing. (As
noted above, this argument requires not a lattice of
sample points with large unknown errors in position
but rather a highly irregular lattice of points whose
individual positions must be well known.) However,
we do not agree that the suppression of aliasing by
an irregular lattice can be of any benefit to vision, at
least in the fovea. As discussed below there are other
factors in vision which suppress aliasing under nor-
mal circumstances anyway. so that aliasing cannot be
a major problem in normal vision. More generally,
aliasing results from undersampling, and under-
sampling has serious consequences for vision that
cannot be avoided with any sampling scheme.
Specifically, hyperacuity requires the ability to inter-
polate between photoreceptors, and this is impossible
unless there is sufficient optical blurring to spread a
point image over at least two or three photoreceptors
in a row {(Barlow, 1979, Westheimer, 1976). The
consequences of this blurring in the spatial frequency
domain will be to filter out any frequencies high
enough to cause aliasing. Thus hyperacuity requires
a degree of blurring that will prevent aliasing irre-
spective of the details of the sampling scheme.

1t is also not obvious to us that undersampling with
a regular lattice is any more deleterious to vision than
undersampling with an irregular lattice. Aliasing per
se is a symptom of undersampling that is pronounced
only if the high frequency content of an image is large
and narrowband. However, for images that are not
highly peaked in the spatial frequency domain (i.e.
not artificially generated gratings) the effect of under-
sampling is basically to introduce “'jaggedness™ into
the image whether the sampling is regular or irregu-
lar. This precludes hyperacuity but has little other
effect. The seriousness of the jaggedness will depend
on how much of the total power is at high frequencies
(above the Nyquist frequency) and whether or not it
is highly concentrated. For realistic retinal images the
power at high frequencies is apparently neither large
nor highly concentrated {Carlson and Cohen, 1978).

for a hexago-
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OTHER FACTORS THAT FORESTALL ALIASING

We have shown that the photoreceptor lattice is
not sufficiently disordered to prevent aliasing in the
fovea. However, the following mechanisms will pre-
vent aliasing under most usual conditions.*

(a) The Nyquist frequency is higher than usually
estimated. Many papers in the vision literature state
that if the cone spacing is 1/120 deg, then aliasing sets
in above a spatial frequency of 1/2d = 60c/deg (e.2.
Yellott, 1982) which is uncomfortably near the foveal
optical cutoff frequency, also approximately 60 ¢/deg
{Campbell and Green, 1965). Unfortunately this is
incorrect and follows from a failure to analyze sam-
pling in two dimensions. In the two-dimensional case
the Nyquist frequency depends on orientationt and
ranges between 2;‘J3 and 4/3 times 1/2d for a
hexagonal lattice, depending on orientation,
significantly above the optical cutoff frequency.

(b) The classical analysis of aliasing has a domain
of applicability basically limited to a single sull
picture. The assumption that the visual system has
available only a single sampling of the image 15
questionable. Binocular vision potentiaily doubles
the spatial sampling frequency, and eye motions
generate successive independent spatial samples
which could be used to resolve aliasing ambiguities
when integrated over time.

Yellott (1982) and others (Snyder, 1982, West-
heimer, 1982) have noted that point (a) does not hold
in parts of the periphery where there is apparently a
severe mismatch between optical cutoff frequency

*Byram {1944), Campbell and Green {1965), and recently
Williams (1983 personal communication) have reported
that high contrast spatial frequency gratings above the
Nyquist frequency appear “wavy”, “splotchy™, or
“scintillating” and change their shape and position.
These visual effects are probably due to aliasing under
very special conditions and on a lattice which is curved.
imperfect, and non-stationary.

+The one dimensional analysis of aliasing shows that
aliasing will be avoided if the spatial frequency content
of an image is restricted to the interval along the spatial
frequency axis between — /24 and 1/2d, where 4 is the
spacing of the sample points. The Nyquist limits, the
frequencies at which aliasing sets in, are the end points
of this interval, +1/2d. In two dimensions spatial
frequencies are vectors, not scalars. The corresponding
result is that aliasing will be avoided if the
2-dimensional spatial frequency content is restricted to
a polygon around the origin in the spatial frequency
plane. This polygon is a square for a square lattice and
a hexagon for a hexagonal lattice with the perpendic-
ular distance from the origin to the sides being 1/2d and
1 f\;"'id for the square and hexagonal lattices re-
spectively. The Nyquist limit is the boundary of the
polygon, and the magnitude of the Nyquist frequency
depends on orientation. We zlso note that aliasing in
two dimensions introduces simultaneous ambiguities
into both the magnitude and orientation of an under-
sampled grating. since two-dimensional aliasing in-
volves subtracting spatial frequency vectors, not mag-
nitudes. (See Goodman., 1968, for a discussion of
sampling in two dimensions).
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and cone sampling frequency. Actually, under-
samptling by a factor of nearly 2 can be tolerated if
one is only interested in low frequencies, a reasonable
description of the periphery (Green, 1970). Consider
an optical cutoff frequency of 60¢ deg and a one
dimensional sampling frequency of 70 ¢ deg (Nyquist
frequency of 35 ¢ deg). The lowest {requency that can
be introduced by aliasing is | 60701 = 10 ¢/deg. By
forming appropriately shaped receptive fields one cun
introduce a neura! cutoff frequency of {0 c/deg, elim-
inating all components above this frequency, aliased
or otherwise. However the peripheral undersampling
is apparently by a factor of 4 which cannot be
eliminated this way (Snyder. 1982; Yellott, 1982
Jennings and Charman, 1981; Osterberg. 1933).
Combined with point (b) above. this suggests that,
assuming that the peripheral lattice has sufficient
regularity, the most sensitive test for aliasing would
involve stabilized or very brief monocular gratings in
the periphery.

CONCLUSION

We have quantitatively analyzed the spatial quality
of a primate foveal cone lattice. We find that it is a
high quality hexagonal lattice with a correlation
length of at least 130 photoreceptors over spans of
tens of photoreceptors. We find that there is not
sufficient disorder in the foveal latiice to prevent
aliasing. Rather the photoreceptor lattice seems to be
constructed with sufficient accuracy so that it can
serve as the fundamental metric for spatial vision
even in hyperacuity tasks. This suggests there is no
need for any visual mechanism to measure the true
photoreceptor positions and the burden of spatial
calibration falls on the developmental processes in-
volved in the formation of the photoreceptor lattice.
The measurements reported here combined with our
previous psychophysical results suggest a model of
spatial vision in which the photoreceptor lattice 15 the
sole geometrical element with all other elements being
topological.
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