Introduction

Background

Stroop tasks are designed to elicit conflict between stimulus dimensions and/or response choices.\(^1\)\(^-\)\(^3\) - Delay in reaction time and activity in specialized neural circuits are taken as evidence for biomarkers of conflict.\(^1\)\(^-\)\(^3\)

\textbf{QUESTION:}\n
Does conflict between gesture and word engage canonical language systems, such as Wernicke’s and Broca’s areas, or is it associated with more domain-specific systems tied to social function?\(^6\)

\textbf{Subjects:}\n
- 34 healthy volunteers: 27 male, 7 female; mean age: 24

\textbf{Media:}\n
- 648.25, SfN 2014
- A pdf version of this poster is available here: http://fmri.org/publications/Yahil-et-al-SFN-Poster-2014.pdf
- You can also get the poster by scanning the QR code on the left.

Experimental Design

Communication Conflict

Task: Identify the gesture as “yes” or “no”

<table>
<thead>
<tr>
<th>CONGRUENT</th>
<th>INCONGRUENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>Head</td>
</tr>
<tr>
<td>Hand</td>
<td>Hand</td>
</tr>
</tbody>
</table>

- Subjects use button responses to indicate the meaning of thumb or head movements as “yes” or “no.”
- 6 each of congruent and incongruent-dominant blocks, alternated with 15s rest - 4 trials per block, ISI: 3.75s

fNIRS Acquisition

- Continuous-wave functional near-infrared spectroscopy (Shimadzu LABNIRS) sampled every 33ms.
- 30 channels registered to standard MNI coordinates using SPM-NIRS (Bioimaging and Signal Processing Lab, KAIST) and a 3D digitizing system (Polhemus Patriot)

Neuroimaging Results

Broca’s Area:

- Inferior frontal G
- (-50.0, 43.7, 26.5)
- (-58.0, 34.8, 16.3)

Wernicke’s Area:

- Superior Temporal G
- (-70.0, -37.3, 20.5)
- (-62.3, -61.8, 16.3)

Figure 2. Video: head shake, nod, thumbs up, thumbs down. Audio: “yes” and “no.” Gestures are congruent or incongruent with spoken word

Figure 3. Task design: 15s task alternates with 15s rest. 4 trials per block. Fixed ISI of 3.75s.

fNIRS Analysis

- fNIRS oxyhemoglobin signals were low-pass filtered, detrended, and event-trigger averaged in MATLAB
- Channel locations were converted to MNI maps with SPM-NIRS (BISPL).
- A GLM was used to obtain beta values of event-triggered signals, incongruent greater than congruent (I > C), projected onto 3D brain

Behavioral Results

Within-subjects Analysis

- The difference in reaction time for congruent and incongruent trials was significant: \(p < 0.05, \text{df: } 30, \text{two-tailed.} \)
- \(\mu: 21\text{ms} \pm 9\text{ms} \) (SEM)

Group Analysis

- Congruent reaction time:
 - \(\mu: 741\text{ms} \pm 28\text{ms} \) (SEM)
- Incongruent reaction time:
 - \(\mu: 762\text{ms} \pm 30\text{ms} \) (SEM)

Figure 4. Group-level analysis: t-test of beta values for I > C signals. MNI coordinates \((x, y, z)\) shown per active region. Yellow numbers indicate approximate channel locations.

Figure 5. Reaction time differences (ms) for incongruent trials larger than congruent.

Conclusions

Neuroimaging results are consistent with the hypothesis that conflict between gesture and word engages both domain-specific language regions and socially-responsive neural circuitry.

Domain specific (blue boxes):

- Wernicke’s Area: STG/MTG
- Receptive language
- Broca’s Area: IFG

Socially-responsive (gray box):

- Temporal-parietal junction: TPJ
- Social processing

References

Acknowledgements

- The authors thank Swetha Dravida, MD/PhD candidate, Yale School of Medicine Class of 2017, for assistance with data analysis.
- The authors also thank Yumie Ono, PhD (Meiji University), and Shimadzu Corporation for providing facilities and equipment.