Neural Correlates of Conflict During Interpersonal Communication Observed in Dorsolateral Prefrontal Cortex using NIRS

Shaul Yahil,1 Xian Zhang,1,2 Adam Noah,1,2 Pawan Laponsisuth,1,4 Maurice Biriotti,1,2,5 and Joy Hirsch1,2,3,6

1Brain Function Laboratory, 2Department of Psychiatry, 3Department of Neurobiology, Yale School of Medicine, 4Department of Biomedical Engineering, Yale University, New Haven, CT, 5Medical Humanities Department, 6Institute for Cognitive Neuroscience, University College London, United Kingdom

Introduction

Background

Stroop tasks are designed to elicit conflict between stimulus dimensions and/or response choices.1-3 Delay in reaction time and activity in specialized neural circuits are taken as evidence for biomarkers of conflict.1-3

QUESTION: Does conflict between gesture and word engage canonical language systems, such as Wernicke's and Broca's areas, or is it associated with more domain-general systems tied to social function?

Subjects

- 34 healthy volunteers: 27 male, 7 female; mean age: 24

Experimental Design

Communication Conflict

- Task: Identify the gesture as "yes" or "no"

<table>
<thead>
<tr>
<th>CONGRUENT</th>
<th>Head</th>
<th>Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spoken Word</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Hand Movement</td>
<td>Forward</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INCONGRUENT</th>
<th>Head</th>
<th>Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spoken Word</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Hand Movement</td>
<td>Forward</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Video: head shake, nod, thumbs up, thumbs down. Audio: "yes" and "no." Estures are congruent or incongruent with spoken word.

Subjects use button responses to indicate the meaning of thumb or head movements as "yes" or "no." 6 each of congruent and incongruent-dominant blocks, alternated with 15s rest - 4 trials per block, ISI: 3.75s

Figure 2. fNIRS optode layout with emitters (red) and detectors (blue) on left hemisphere

Figure 3. Task design: 15s task alternates with 15s rest. 4 trials per block. Fixed ISI of 3.75s.

fNIRS Acquisition

- Continuous-wave functional near-infrared spectroscopy (Shimadzu LABNIRS) sampled every 33ms.
- 30 channels registered to standard MNI coordinates using SPM-NIRS (Bioimaging and Signal Processing Lab, KAIST) and a 3D digitizing system (Polhemus Patriot)

Behavioral Results

Within-subjects Analysis

- The difference in reaction time for congruent and incongruent trials was significant: p < 0.05, df: 30, two-tailed.
 - µ: 21ms±9ms (SEM)

Group Analysis

- Congruent reaction time: µ: 741ms±28ms (SEM)
- Incongruent reaction time: µ: 762ms±30ms (SEM)

Figure 5. Reaction time differences (ms) for incongruent trials larger than congruent.

Conclusions

Neuroimaging results are consistent with the hypothesis that conflict between gesture and word engages both domain-specific language regions and socially-responsive neural circuitry.

Domain specific (blue boxes):

- Wernicke's Area: ST / MT
- Receptive language
- Broca's Area: IFG

Socially-responsive (gray box):

- Temporal-parietal junction: TPJ
- Social processing

References

Acknowledgements

- The authors thank Swetha Dravid, MD/PhD candidate, Yale School of Medicine Class of 2017, for assistance with data analysis.
- The authors also thank Yumie Ono, PhD (Meiji University), and Shimadzu Corporation for providing facilities and equipment.