
E
I

T
a

b

a

A
R
R
A
A

K
f
M
F
R

1

s
(
2
L
M
&
o
p
V
o
t
a

s
s
e
p
G
u

N

(

0
d

Neuropsychologia 48 (2010) 1886–1894

Contents lists available at ScienceDirect

Neuropsychologia

journa l homepage: www.e lsev ier .com/ locate /neuropsychologia

ffects of heartbeat and respiration on macaque fMRI:
mplications for functional connectivity

obias Teicherta,∗, Jack Grinbanda,b, Joy Hirschb, Vincent P. Ferreraa

Columbia University, Department of Psychiatry and Neuroscience, David Mahoney Centre for Brain and Behavior Research, New York, USA
Columbia University, Neurological Institute, Program for Imaging & Cognitive Sciences (PICS), New York, USA

r t i c l e i n f o

rticle history:
eceived 3 July 2009
eceived in revised form 26 October 2009
ccepted 27 November 2009
vailable online 5 December 2009

a b s t r a c t

The use of functional magnetic resonance imaging (fMRI) in non-human primates is on the increase.
It is known that the blood-oxygen-level-dependent (BOLD) signal varies not only as a function of local
neuronal energy consumption but also as a function of cardiac and respiratory activity. We mapped
these cyclic cardiac and respiratory artifacts in anesthetized macaque monkeys and present an objective
eywords:
cMRI

acaque
unctional connectivity

analysis of their impact on estimates of functional connectivity (fcMRI). Voxels with significant cardiac
and respiratory artifacts were found in much the same regions as previously reported for awake humans.
We show two example seeds where removing the artifacts clearly decreased the number of false positive
and false negative correlations. In particular, removing the artifacts reduced correlations in the so-called
resting state network. Temporal bandpass filtering or spatial smoothing may help to reduce the effects

but
c and
esting state of artifacts in some cases
and removes cyclic cardia

. Introduction

Recent years have seen an increase in the number of fMRI
tudies using anesthetized as well as awake macaque monkeys
e.g., Brewer, Press, Logothetis, & Wandell, 2002; Essen et al.,
001; Hadj-Bouziane, Bell, Knutsen, Ungerleider, & Tootell, 2008;
ogothetis, Guggenberger, Peled, & Pauls, 1999; Pinsk, DeSimone,
oore, Gross, & Kastner, 2005; Tsao, Freiwald, Knutsen, Mandeville,
Tootell, 2003; Vincent et al., 2007). Such studies provide a unique

pportunity to bridge the gap between invasive single cell electro-
hysiology in monkeys and non-invasive fMRI methods in humans.
incent et al. (2007) were recently able to show that measures
f functional connectivity yield meaningful results even in anes-
hetized monkeys. This finding amplifies the potential range of
pplications of monkey imaging.

The BOLD signal is modulated by several physiological artifacts
uch as fluctuations in breathing rate and amplitude as well as pul-
atile and respiratory motion. It is still a mater of debate to what

xtent measures of functional connectivity represent such artificial
rocesses (for reviews see Auer, 2008; Rogers, Morgan, Newton, &
ore, 2007). The current study focuses exclusively on blood vol-
me, blood oxygenation, and motion artifacts with a fixed phase
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are not an adequate replacement for an algorithm that explicitly models
respiratory artifacts.

© 2009 Elsevier Ltd. All rights reserved.

relation to the cardiac and respiratory cycle. These artifacts will be
referred to as cyclic physiological artifacts or simply cyclic artifacts.
Cyclic artifacts have long been known to affect human BOLD signals
(e.g., Biswal, DeYoe, & Hyde, 1996; Dagli, Ingeholm, & Haxby, 1999;
Glover, & Lee, 1995; Glover, Li, & Ress, 2000; Harvey et al., 2008; Hu,
Le, Parrish, & Erhard, 1995; Lowe, Mock, & Sorenson, 1998; Lund,
2001a; Lund, Madsen, Sidaros, Luo, & Nichols, 2006; Mitra, Ogawa,
Hu, & Ugurbil, 1997; Raj, Anderson, & Gore, 2001). Despite the cur-
rent interest in monkey fMRI, cyclic artifacts of this species have
not been quantified.

The detection and removal of cyclic artifacts may be of great
importance for fcMRI, especially when using long TRs (Auer, 2008;
Cordes et al., 2001; Lowe et al., 1998; Lund, 2001a; Maldjian, 2001;
Mitra et al., 1997; Rogers et al., 2007). Lund (2001a) has argued
that with long TRs cyclic artifacts may be aliased into lower fre-
quency bands which are typically used for fcMRI. Further, Lowe et
al. (1998) have shown that the spatial specificity of fcMRI is reduced
when using long TRs, the most likely cause being aliased cyclic arti-
facts. However, despite the potential impact of cyclic artifacts on
fcMRI and the availability of tools to remove them (e.g., RETROICOR,
Glover et al., 2000), a large number of studies do not make use of
this possibility (for a review of clinical studies see Auer, 2008).

One reason for this might be that so far, no study has actu-

ally compared standard whole-brain connectivity maps before and
after removal of cyclic artifacts. Previous studies which have ana-
lyzed cyclic artifacts (e.g., Glover et al., 2000; Harvey et al., 2008;
Lund et al., 2006), only show maps of the affected regions (suscep-
tibility maps). However, the fact that two voxels are both affected
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http://www.elsevier.com/locate/neuropsychologia
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y cardiac artifacts, does not automatically imply that they will
ave correlated artifacts. For example, if the artifact a1 follows the
ine of the cardiac cycle in one voxel, a1 = sin(�), and the cosine of
he cardiac cycle in another region, a2 = cos(�), they are effectively
ncorrelated. Also, it is important to consider differences in slice-
ime acquisition which will cause different voxels to be sampled at
ifferent phases of the cardiac and respiratory cycle. Depending on
he average phase shift introduced by the difference in slice-timing,
wo voxels with identical dependence on cardiac and respiratory
ctivity may show significant positive, negative or no correlation.

Further, standard fcMRI preprocessing steps typically involve
xplicit as well as implicit spatial low-pass filtering. Artifacts in
djacent slices are not necessarily sampled in a similar phase of
he artifact, thus introducing high spatial frequencies perpendicu-
ar to the slice orientation. Thus, spatial smoothing may reduce the
mplitude of the cyclic artifacts to a larger degree than other sig-
als. In summary, the relation between susceptibility maps on the
ne hand, and fcMRI maps on the other is not immediately obvious
nd merits empirical investigation.

The present study has two primary goals. First, it provides a
uantitative assessment of cyclic artifacts in macaque monkeys,
nalogous to previous studies in humans (Cordes et al., 2001; Glover
t al., 2000; Harvey et al., 2008; Lund et al., 2006). Second, it analy-
es the effects of removing cyclic artifacts on standard whole-brain
unctional connectivity maps of anesthetized macaques. We find
hat, indeed, cyclic artifacts quantitatively affect estimates of func-
ional connectivity and may lessen our ability to detect and quantify
unctional networks.

. Materials and methods

.1. Imaging

Three adult male macaque monkeys (macaca mulatta, 7–10 kg) were scanned
nder light isoflurane anesthesia (0.8–1.1%, spontaneous ventilation) on a 3T
hilips scanner. The monkeys were scanned in the supine position while
ead motion was restrained by padding placed between the head and the
eadcoil. In the initial phase of the anesthesia, resting state T2*-weighted

unctional images were acquired (TR = 2000 ms, TE = 25 ms, flip-angle = 72◦ , FOV:
92 mm × 160 mm × 50 mm, 96 × 96 × 25 2 mm3 isotropic voxels, 400 volumes per
eries). Slices were acquired with the standard Philips ventral to dorsal interleaved
equence. Subsequently, under deeper anesthesia, T1-weighted structural images
ere taken (256× 256× 100 1 mm3 isotropic voxels).

.2. Physiological measures

During functional scans, cardiac activity was derived from peripheral blood
xygenation measured with a pulse-oximeter placed on one of the monkey’s toes.
he spontaneous respiratory activity was monitored by measuring end-tidal CO2-
oncentration. These signals, i.e., the cardiac signal C(t) and the respiratory signal
(t) were sampled and digitized at a rate of 200 Hz and saved alongside the slice
riggers from the scanner.

Following Hu et al. (1995) and Glover et al. (2000) we defined the phase of the
ardiac signal �C by the following equation:

C (t) = 2�(t − tpre)
tpost − tpre

Here tpre and tpost are the two local maxima in peripheral blood oxygenation
receding and following t. Hence, �C advances at a steady pace within each cardiac
ycle. The rate of change of �C differs between cycles of different duration. In contrast
o Glover et al. (2000) we used the same method to derive an estimate of phase of
he respiratory cycle, �R (see Section 2.3 for details).

To detect the local maxima of C(t) and R(t), we first filtered out high frequen-
ies using Gaussian kernels with a standard deviation of 25 and 200 ms for C and
, respectively. Subsequently, we calculated time derivatives of the signals by sub-

racting a lagged version of the same signal:

dx

dt
[n] = �ıt (× [n] − x [t − �])

Here ı corresponds to the temporal resolution, in our case 1/200 and � to the lag
hich was chosen as 1 and 2 for C and R, respectively. Local maxima were detected
hen the sign of the derivative switched from positive to negative.
gia 48 (2010) 1886–1894 1887

2.3. Artifact removal

In the present study we used harmonic or trigonometric regression (e.g., Mardia,
1972) to detect and remove cyclic cardiac and respiratory artifacts. Briefly, the
method assumes that the raw BOLD signal is the result of neuronally driven changes
in BOLD and artificial changes in BOLD related to cardiac and respiratory activity,
respectively:

Braw(t) = BN (t) + BC (t) + BR(t)

Further, it is assumed that both BC and BR are functions of the phase of the cardiac
and respiratory cycle, respectively:

BC (t) = aC [�C (t)]

BR(t) = aR[�R(t)]

Here aC and aR describe the effect of an average cardiac or respiratory cycle on
BOLD as a function of phase. In order to visualize aC and aR we plot the raw BOLD
activity Braw not as a function of time, but as function of the current phase �C (t) and
�R(t), respectively (see supplementary Figs. S1b&c and S2b&c, respectively). The
functions aC and aR can be estimated in several ways. In the present paper we used
harmonic regression to fit a subset of orthogonal basis functions to the data. The
functions we fit consist of a constant offset plus the first N Fourier components:

aC/R[�] = ˛0 +
N∑

ω=1

˛ω sin[ω�C/R] + ˇω cos[ω�C/R]

Thus, for each of the two artifacts the entire model is determined by 1 + 2N
parameters. In the present paper we used N = 6, unless stated otherwise. To remove
the artifact we subtracted the estimated artifact from the raw data.

Bclean(t) = Braw(t) − aC [�C (t)] − aR[�R(t)]

The standard harmonic regression which we used here is highly similar to the
RETROICOR method described by Glover et al. (2000). RETROICOR differs from stan-
dard harmonic regression in its treatment of the respiratory artifacts. The respiratory
artifact is thought to arise from apparent motion caused by changes in bulk suscep-
tibility in the lungs (Raj et al., 2001). Hence, the artifact is supposed to depend not
only on the phase of the respiratory cycle, but also on the amplitude. RETROICOR
treats this dependency by introducing a different estimate of phase (see Glover et
al., 2000 for details). We decided not to use this alternative estimate of phase for
two reasons. First, we observed very little variability in the amplitude of the respira-
tory cycles. Thus, our method and RETROICOR, produce virtually identical estimates
of phase with correlation coefficients on the order of .975. Second, if amplitudes
do vary, the RETROICOR phase estimate will have discontinuities in phase space
(Supplementary Fig. 3, top panel). This will cause the sine-regressors to have dis-
continuities in the time domain (Supplementary Fig. 3, bottom panel) which do not
match the continuous nature of the respiratory artifact.

It is important to note that harmonic regression does not assume constant fre-
quency of the cardiac and respiratory signals. However, it does implicitly assume
that the functions aC and aR are constant over the time and frequency range of the
cardiac and respiratory signals during data acquisition. Deviations from this assump-
tion will cause the model to underestimate the amount of variance caused by cardiac
and respiratory artifacts.

We used standard statistical methods to describe the model fit. F-values were
calculated as the fraction of the sums of squares of the model SSQmod and the sums of
squares of the residuals SSQres normalized with the respective degrees of freedom,
F = (SSQmod/dfmod)(dfres/SSQres). The model was considered to provide a significant
fit to the data if the F-value exceeded the 0.95-quantile of an F distribution with
the corresponding degrees of freedom. The percent variance explained (%Var) was
calculated as 1 minus the fraction of the sums of squares of the residuals and the
sums of squares of the original data, %Var = 1 − (SSQres/SSQraw). For fixed degrees
of freedom (as was the case here) there is a simple relation between the F-values
and the percent variance explained: the percent variance explained corresponds
to the fraction of the F-value and the sum of the F-value and the fraction of the
degrees of freedom, %Var = F/(F + (dfres/dfmod)). In the current case, with 13 − 1 =
12 numerator and 394 − 12 − 1 = 381 denominator degrees of freedom the critical
F-value (see above) corresponds to 1.78. This F-value, in turn, corresponds to 5.3%
variance explained.

2.4. Preprocessing

For all runs we used two different preprocessing protocols, one of which used
the harmonic regression method. The leading six volumes were removed to avoid

onset non-stationarities. A functional reference volume was drawn halfway through
the scan ((400 − 6)/2 = 197). All the voxels with intensity values in the lower 5-
percentile in any of the 394 volumes were masked out.

The following steps were executed only if the harmonic regression method was
applied. Using FSL’s math routine (fslmaths, Smith et al., 2004) the shortened and
masked series was highpass-filtered with a cutoff wavelength of 400 s. From the
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ighpassed data we estimated and removed cardiac and respiratory artifacts with
he phase-regression method described above. The removed artifacts were stored
or further analysis. The previously removed low frequency components were added
o the artifact-free data to make the two data sets with and without the artifacts
dentical in every other aspect.

From here on the two preprocessing pipelines were identical. FSL’s motion cor-
ection algorithm (mcflirt, Jenkinson, Bannister, Brady, & Smith, 2002) was used
o register all volumes to the reference functional volume. Typically, the motion
as small, well below the dimensions of a single voxel (2 mm3). FSL’s slice-

ime-correction algorithm (slicetimer, Smith et al., 2004) was used to correct for
ifferences of slice-time acquisition between different slices of a volume. Finally,
sing FSL’s linear registration tool (flirt, Jenkinson et al., 2002 this data set was reg-

stered to a global reference volume which corresponded to the first high-contrast
unctional volume of the fourth run of the session.

Functional images and statistical maps from different animals were registered
nto a common space by a two-step procedure. First, the brain-extracted global func-
ional reference volume was registered to the brain-extracted structural volume.
econd, the structural images of all animals were registered in a standardized space.
he standardized space was created by co-registering and averaging structural vol-
mes of four previously scanned macaque monkeys and aligning the resulting mean
tructural image along the anterior to posterior commissure line.

Brain voxels were determined from the high-resolution structural images using
SL’s brain extraction tool (bet, Smith et al., 2004). Output of the brain extraction
ool was corrected by hand in some difficult cases. These maps were registered to
he low-resolution functional imaging space and served as masks for the detection
f brain voxels (see below).

.5. Functional connectivity

Functional connectivity was calculated for anatomically defined seed regions in
everal temporal waveband bands and with different amounts of spatial smooth-
ng. The preprocessed time-series were demeaned and normalized by their standard
eviation. Mean BOLD activity of all previously determined brain voxels was
egressed out using FSL’s linear regression tool (fsl glm, Smith et al., 2004). These
ata were filtered with two Gaussian kernels with a standard deviation of 1 or 2 mm,
espectively (fslmaths, Smith et al., 2004). The resulting 4D-volumes, including the
riginal one without spatial smoothing, were filtered with a 400 s temporal high-
ass (fslmaths, Smith et al., 2004) in order to remove low-frequency drift. In addition,
e created a bandpassed version of the data by filtering with a 20 s low-pass. The
roprocessing gave rise to 3 (spatial filters) × 2 (temporal filters) × 2 (cyclic artifact
emoval) = 12 4D-volumes for each original run.

To calculate functional connectivity of a seed region to the rest of the brain we
veraged activity in this region and correlated it separately to the activity of all brain
oxels. This procedure was repeated for all runs of the animal in question. For each
oxel this rendered a set of six to eight correlation values, depending on the number
f functional runs acquired for this animal. These values were transformed using
ischer’s z-transformation and fed into a one-sample t-test. The resulting t-maps
ere corrected for multiple comparisons using a two-sided cluster criterion with a

-value cutoff of 2.3 and a critical cluster value of 0.05 (cluster, Smith et al., 2004).

. Results

.1. Heart and breathing rate

Before describing the cardiac and respiratory artifacts in detail
e briefly report the properties of the cardiac and respiratory sig-
als. For all monkeys, the average cardiac cycle was around 550 ms,
lightly larger than a quarter of the TR. (monkey C: 565 ms ± 7;
onkey L: 537 ms ± 3; monkey P: 598 ms ± 12). An average res-

iratory cycle was around 2 s, on the order of magnitude of the TR
monkey C: 1935 ms ± 75; monkey L: 2025 ms ± 67; monkey P:
675 ms ± 88). In addition, we analyzed the variability of heart and
reathing rate over the course of an individual run. For individ-
al runs, the range of cardiac cycle durations, i.e., the longest cycle
inus the shortest cycle, was 32 ms (monkey C: 32 ms ± 3; monkey

: 34 ms ± 10; monkey P: 31 ms ± 4). The range of respiratory cycle
urations, i.e., the duration of the longest cycle minus the duration
f the shortest cycle, was 344 ms on average (monkey C: 241 ms ±
07; monkey L: 360 ms ± 155; monkey L: 432 ms ± 35).
.2. Cardiac artifacts

For all three monkeys a large number of voxels had significant
ardiac artifacts (see Figs. 1a and 2a). Supplementary Fig. S1 shows
gia 48 (2010) 1886–1894

the cardiac artifact for an example voxel in the anterior cingulate.
The bulk of voxels with cardiac artifacts was found close to the
major arteries, such as the basilar artery and Circle of Willis, as
well as the anterior, middle, and posterior cerebral arteries. Vox-
els around major veins seemed to be less affected. However, voxels
around the superior sagittal sinus did show significant cardiac arti-
facts.

The most affected brain regions are (1) the ventral base of the
cerebrum including the frontal pole of the temporal lobe, hypotha-
lamus, parahippocampal cortex, and the entire brain stem, (2) the
entire medial wall of the two hemispheres including anterior and
posterior cingulate, and (3) regions in the fold of the sylvian fissure
including the insula and auditory cortex (see Figs. 1a and 2c). This
is likely to be due to the proximity of these regions to major vessels.
Note that apart from the fourth ventricle, the other ventricles are
not affected by the cardiac artifact.

3.3. Respiratory artifacts

For all three monkeys a large number of voxels had significant
respiratory artifacts (see Figs. 1b and 2b). Supplementary Fig. S2
shows the respiratory artifact for an example voxel in the fourth
ventricle. Voxels with significant respiratory artifacts were more
common than voxels with significant cardiac artifacts. Part of the
respiratory artifacts seemed to arise from breathing-related motion
as opposed to breathing-related changes in blood oxygenation. To
test this hypothesis we performed FSL’s motion correction (mcflirt,
Jenkinson et al., 2002) on the estimated artifact. For all three
monkeys we found small but highly consistent breathing-related
motion in the anterior–posterior and, with smaller amplitude, the
ventro-dorsal direction. A study by Raj et al. (2001) concludes
that analogous effects in humans are apparent motion caused by
changes in bulk susceptibility in the lungs.

3.4. Spectral analysis of cardiac and respiratory artifacts

To determine the temporal properties of the artifacts we com-
pared power spectra of the uncorrected and corrected data sets. We
selected voxels with significant artifacts and calculated the mean
power spectra of these voxels for the uncorrected and the corrected
time-series. Fig. 3 shows the fraction of the corrected and uncor-
rected power spectra which corresponds to 1 minus the percent
variance explained for the temporal waveband in question.

Cardiac artifacts were mainly found in wavelengths below 10 s
(see Fig. 3a). In contrast, respiratory artifacts were observed also
with longer wavelengths (see Fig. 3b). It is important to note that
these differences are not an intrinsic property of the two signals,
because the observed wavelength depends on the aliasing of the
artifacts. The aliased frequency is determined by the difference
between TR and the average duration and variability of the cardiac
or respiratory cycle (e.g., Glover et al., 2000; Kiviniemi, Ruohonen,
& Tervonen, 2005; Lund, 2001a). Aliasing into low frequency bands
is especially likely to occur if the TR and duration of the artifactual
cycle are similar. In line with this, we find an aliasing of the res-
piratory artifact into long wavelengths for monkeys C and L who
have respiratory cycles of 1935 and 2025 ms, respectively, but not
for monkey P with a respiratory cycle of 2675 ms (see Fig. 3b).

We simulated the effect of different TRs on the aliasing of the
cardiac and respiratory artifacts. To do so, we used the estimated
artifact ac(�c) of a strongly affected voxel, and determined the
phase of the cardiac artifact �(n) = �c(n × TR) for a variety of dif-

ferent TRs. Then, we calculated the power spectra of the simulated
artifacts ac[�c(n × TR)] for all choices of TR. The results in Fig. 4a
show that for a TR of 2 s (dotted line), the cardiac artifacts are aliased
mainly into very short wavebands. In contrast, the respiratory arti-
facts are aliased to a wavelength of roughly 100 s. Furthermore,
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Fig. 1. Cardiac (a) and respiratory artifact (b) from one macaque monkey. Data were averaged over 8 runs of 400 volumes each. Regions with significant cyclic artifacts are
overlaid on the individual T1-weighted structural image. The colors correspond to the percent variance explained by the harmonic regression. Note the different scales of
the color bar for the cardiac and respiratory artifacts. (a) Regions with significant artifacts can be found around major vessels. The basilar artery (ba), anterior (aca), medial
( to cau
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mca) and posterior (pca) cerebral arteries can clearly be distinguished. Veins seem
he brain such as the opthalmic artery are also visible. (b) Part of the respiratory art

he simulation shows that for some choices of TR the cardiac arti-
acts can be expected in wavelengths well above 10 s. In such cases,
ow-pass filtering the data will not remove the cardiac artifacts.

.5. Functional connectivity

The previous results have shown that a large fraction of voxels
ave significant cardiac and respiratory artifacts. In the following
e will test how these artifacts affect functional connectivity maps.

he impact of the cyclic artifacts was assessed by comparing results

rom three conditions. As a baseline we use the highpassed data set
rom which merely slow linear drifts had been removed. Results
orm this data set were compared to two artifact removal methods,
he harmonic regression algorithm as well as the standard low-pass

ethod.
se less artifacts but the superior sagital sinus (sss) is clearly visible. Arteries outside
are caused by breathing-related apparent motion.

Example 1. Basilar artery seed

To test whether cyclic artifacts may affect fcMRI maps we
selected a region which is highly affected by cyclic artifacts. The
susceptibility maps suggest that the basilar artery can be consid-
ered such a worst case scenario. Selecting the basilar artery as a
seed region has several advantages. First, under the assumption
that there are no residual gray-matter voxels in the seed, we can
assume that all observed correlations are not neuronally driven and
hence artificial. Thus, to a first approximation, the improvement of
the fcMRI maps can be quantified as the reduction in the number of

voxels with a significant correlation. Second, in the event that we
do find voxels with artificial correlations, it will serve as a bench-
mark test for the effectivity of the artifact removal method. If the
method works, we would expect at least some of those correlations
to disappear.



1890 T. Teichert et al. / Neuropsychologia 48 (2010) 1886–1894

Fig. 2. Empirical distribution function of percent variance explained (a) by cardiac and (b) respiratory artifacts. All brain voxels of all three monkeys aggregated. The solid,
dashed and dashed/dotted lines denote the values of the distribution function for 2.5, 5 and 10% variance explained. (c) Cardiac and (d) respiratory artifacts in different
brain regions. Artifacts are quantified as the fraction of voxels with significant artifacts. occ. pole: occipital pole, aIC: anterior insular cortex, dmPF: dorso-medial prefrontal
cortex, A1: primary auditory cortex, pC/PCC: posterior cingulate and posterior cuneal cortex (resting state seed), ant. Cing.: anterior cingulate, bas. art.: basilar artery, brain:
all voxels assigned to neither of the specific regions.

Fig. 3. Spectral analysis. Fraction of remaining power after removal of the cardiac (a) and respiratory artifacts (b). Different shades of gray correspond to the three different
animals. Data are averaged over all runs and voxels with significant cardiac (a) and respiratory artifacts (b). Note that most of the artifacts are in the waveband below 10 s.
However, some of the respiratory artifacts are in the waveband between 20 and 300 s. The differences between the animals are due to different cardiac and respiratory
frequencies which cause an aliasing of the artifacts into different wavebands.

Fig. 4. Aliasing of (a) cardiac and (b) respiratory activity as a function of simulated TRs. Normalized luminance coded power spectra for cardiac and respiratory activity of a
random run sampled at different simulated TRs. Large black dots denote wavelengths with maximal power, smaller gray dots denote wavelengths which are affected to a
lesser degree. For TRs shorter than half the length of the average cycle (Nyquist frequency; 0.25 s for cardiac and 1s for respiratory activity) the frequency analysis detects
the power in the correct waveband. Longer TRs lead to an aliasing of the physiological activity into lower wavelengths. Note the large systematic change of the aliased
wavelengths as a function of TR. For a TR of 2 s (dotted line) the predictions from the simulation match the data, i.e., cardiac artifacts are found mainly in a short wavelengths
while respiratory artifacts are also found with longer wavelengths.
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Fig. 5. Functional connectivity of the basilar artery seed. The different columns correspond to different amounts of spatial smoothing. The color code displays the number
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f animals with significant positive (red to yellow) and negative (dark to light blue
emoved by both the harmonic regression technique and the low-pass filter. It is imp
nto the corresponding waveband as happened to be the case here. The alternating
n slice-time acquisition.

Fig. 5 shows the results of the fcMRI analysis for the basilar artery
eed. For the data with the artifacts (top row) we find a large num-
er of voxels with significant positive or negative correlations to
he seed region. These artificial correlations are most pronounced
or moderate spatial filtering, but can also be observed for no or
trong spatial filtering. A closer inspection reveals a very promi-
ent spatial pattern which consists of alternating stripes of positive
nd negative correlations. The orientation of the stripes is parallel
o the slice orientation. We suggest that the pattern is due to dif-
erences in slice-time acquisition ıt which amount to an average
hase shift ı� of the cardiac cycle between two voxels in different
lices. Because the artifact as a function of phase is similar for most
oxels a1(�) � a2(�), this shift determines the sign and magnitude
f correlation �(a1, a2) between observed artifacts of two voxels in
ifferent slices, �(a1, a2) � �(a1(�), a1(� + ı�)).

The bulk of these artificial correlations disappears after remov-
ng the cyclic artifacts (middle row, see Table 1 for details). This
s a clear indication that (1) cyclic artifacts may affect fcMRI maps
nd (2) that the harmonic regression algorithm clearly reduces the
mpact of the artifacts. The alternating stripes of positive and neg-
tive correlations which can be observed in the data set with the
rtifacts disappear almost completely. These findings suggest that
fter removal of the artifacts the fcMRI maps reflect random spuri-
us correlations as would be expected from any statistical method.

In the current case, the artifacts are removed just as effectively
y standard low-pass filtering (third row). It is important to note
hat the low-pass filtering works if and only if the artifacts happen

o be aliased into the high frequency range. While this happened to
e the case for the cardiac artifacts in the present case (see Fig. 3),
his is not the rule. As we show above, the cyclic artifacts may be
liased into any waveband (see Fig. 4). In such a case, the low-

able 1
ercent voxels with significant positive and negative correlation to the basilar artery
eed region in the condition with moderate spatial filtering (�=1mm).

Monkey L Monkey P Monkey C

With artifacts 6.3/7.7% 9.2/10.6% 5.3/6.3%
Without artifacts 1.7/1.9% 2.8/3.7% 3.9/5.5%
Low-passed 1.9/2.2% 13.2/14.2% 2.2/3.7%
lations to the seed region. A large fraction of the artificial correlations (top row) is
t to note that the low-pass filter method works only if the cyclic artifacts are aliased
ontal stripes of positive and negative correlation are most likely due to differences

pass method will be ineffective and render the same artificial fcMRI
maps as the highpassed data (top row).

Example 2. Resting state network

A recent study has reported a network of correlated brain areas
in anesthetized macaques (Vincent et al., 2007). The described
network consisted of four regions which showed strong similar-
ity to the so-called ‘resting state’ or ‘default’ network previously
described for awake human subjects (Damoiseaux et al., 2006; Fox
et al., 2005; Raichle et al., 2001): the posterior cingulate/precuneal
cortex (pC/PCC), the dorsal medial prefrontal cortex (dmPFC), lat-
eral temporo-parietal cortex (lTPC) and posterior parahippocampal
cortex (pPHip). It is noteworthy that all of these regions are close
to major vessels (pC/PCC and dmPFC are near the anterior cere-
bral artery; lTPC is near the middle cerebral artery; pPHip near
the posterior cerebral artery, see also Fig. 6). Thus, the resting
state network is optimally suited to test whether correlated car-
diac artifacts can affect fcMRI of a realistic seed region, i.e., the
pC/PCC.

Using moderate spatial filtering (� = 1 mm) we found correla-
tions in brain areas which partially resemble the ones described by
Vincent et al. (2007). Significant positive correlations were found
mainly in the lTPC (see Fig. 6 top row). Significant positive cor-
relations were less consistent in pPHip and completely absent in
the dmPFC. Despite the differences, these results were sufficient to
test whether the observed correlations in the lTPC were affected
by cyclic artifacts. Indeed, after removal of the artifacts the number
of voxels with positive correlations in lTPC and pPHip was clearly
reduced (Fig. 6 middle row). This suggests that even for realistic
seed regions like the pC/PCC, fcRMI maps may be affected by cyclic
artifacts.

As for the basilar artery seed, we expected the low-pass method
to be just as effective in the current case. However, the low-
passed data revealed the same pattern of positive correlations
in lTPC as the highpassed data (Fig. 6 bottom vs. top row). This

seems to suggest that in this case the low-pass method was
less effective at removing the cyclic artifacts. There is an alter-
native explanation for this finding: assume that there are two
independent sources which give rise to the positive correla-
tions in lTPC, one artificial source linked to the cyclic artifacts,
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Fig. 6. ‘Resting state’ network. fcMRI maps for a seed in the posterior cingulate/precuneal cortex (leftmost panel). Conventions as in Fig. 5. Regions with significant correlations
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ere found in the lateral temporo-parietal cortex and posterior parahippocampal c
orso-medial prefrontal cortex. The number of voxels with significant correlation
educed by the harmonic regression method (middle row) and to a lesser degree by

nd another source which probably reflects correlated neuronal
ctivity. Removing the cyclic artifacts reduced the number of
ositive voxels by removing the artifacial source of correlation.
he residual correlations of neuronal origin were lost because
f uncorrelated noise. The low-pass filter removed not only the
yclic artifacts (which happened to be aliased to this wave-
and) but also a big amount of the uncorrelated noise. Hence,
y removing both correlated and uncorrelated artifacts the cor-
elations of putatively neuronal origin are now able to reach
ignificance.

. Discussion

Cardiac and respiratory artifacts were mapped in lightly anes-
hetized macaque monkeys. The artifacts were found to have a
patially and temporally non-uniform effect on BOLD signals. The
patial distribution of the artifacts was similar to that previously
escribed for awake humans (Cordes et al., 2001; Glover et al., 2000;
arvey et al., 2008; Lund et al., 2006). The bulk of the cardiac arti-

acts were found close to major vessels. Respiratory artifacts were
ainly found in regions with a high spatial derivative as found,

or example, at the fringes of the brain, and could be explained
y breathing-related (apparent) motion. Depending on the rate as
ell as the variability of the respiratory and cardiac cycle, the cor-

esponding artifacts were aliased into a wide range of temporal
avebands (Biswal et al., 1996; Glover et al., 2000; Lund, 2001a;

und et al., 2006). In cases where the artifacts are aliased to wave-
ands typically used for fcMRI (∼10/20–400 s), they will have a
rofound impact on fcMRI maps if the seed region is affected by
he artifacts. These findings complement studies showing that the
emoval of cyclic artifacts improves the quality of statistical infer-
nces for standard fMRI GLM analyses (Harvey et al., 2008; Lund et
l., 2006).

.1. Necessary, sufficient and modulating conditions

Our results show that under certain conditions the removal of

he cyclic cardiac and respiratory artifacts may have a profound
mpact on fcMRI. In the following we describe the factors that
etermine whether cyclic artifacts will cause artificial correlations.

Spatial restrictions. Two voxels may show artificial correlations
nly if both of them are affected by the artifact. Thus, if the seed
(top row). In contrast to previous fcMRI studies, no correlations were found in the
e lateral temporo-parietal cortex and the posterior parahippocampal cortex was
w-pass filtering (bottom row).

region itself is not affected then the entire fcMRI map will not be
affected. If the seed region is affected, there is a chance that other
affected voxels may show artificial positive or negative correlations
(see Fig. 5 and 6).

Temporal restrictions. Our results and our simulations show that
cardiac and respiratory artifacts can be aliased into a variety of dif-
ferent wavebands (see Figs. 3 and 4; also refer to citations Biswal
et al., 1996; Glover et al., 2000; Lund, 2001a; Lund et al., 2006).
The aliased wavelength is determined by the TR and the car-
diac/respiratory frequency. The artifacts will affect fcMRI only if
they are aliased into the waveband used for fcMRI. Typical choices
of TR and values of cardiac/respiratory frequency can easily lead to
an aliasing into wavelengths from 10/20 to 400 s which are typically
used for fcMRI. Thus, adequate temporal filtering may reduce the
effects of artifacts in some cases, but it is not a reliable substitute
for more sophisticated artifact removal algorithms.

Spatial smoothing. Due to differences in slice-time acquisition,
the artifacts in different slices of a volume are sampled during dif-
ferent phases of the artifact. Such differences in acquisition time
may introduce high spatial frequencies in the direction perpen-
dicular to the slices. The presence of high spatial frequencies is
determined by the mean difference in the phase of the artifacts
for adjacent slices. If the difference is large, i.e., close to �, the
artifacts will have high spatial frequency content perpendicular to
the slices. In such a case any kind of spatial smoothing will atten-
uate the artifacts. Spatial smoothing may occur explicitly as part
of the standard preprocessing routine or implicitly during motion
correction and registration. Another source of spatial smoothing
comes from the averaging of activity of all voxels in the seed region.
Thus, if the seed region spans several slices, averaging the activity
may cancel out a considerable fraction of the artifact. However,
even with explicit spatial smoothing, motion correction and a seed
region spanning several slices, cardiac and respiratory artifacts still
had a significant effect on our fcMRI maps (see Fig. 5 and 6). Thus,
spatial smoothing may reduce the effects of the artifacts some-
times, but they are no substitute for an actual artifact removal
algorithm.
Slice acquisition time and slice orientation. If spatial and temporal
restrictions for the presence of artifacts are met, fcMRI maps will
be affected by the artifacts. The precise pattern of artificial corre-
lations is determined by seemingly unrelated parameters such as
slice-timing and slice orientation. The average difference in slice
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cquisition time between voxels in the seed region and the voxel
n question will determine the sign and magnitude of the artificial
orrelations. The slice orientation will determine the difference in
lice acquisition time between a voxel and the average voxel in the
eed region. Taken together the two parameters determine the spa-
ial pattern of the artificial correlation in affected brain regions (see
op row in Fig. 5)

.2. Resting state network

We investigated the effects of cyclic artifacts on fcMRI of the
C/PCC, a well-studied brain region which has been implicated
o play an important role in the so-called resting state network.

e found significant positive correlations in the lTPC as previously
escribed for anesthetized macaque monkeys (Vincent et al., 2007).
owever, correlations in the pPHip and dmPFC were less reliable or
ompletely absent. Comparing the results before and after removal
f the artifacts we conclude that correlations in the lTPC and the
PHip may be overestimated if cyclic artifacts are not removed.
owever, our results are in line with the assumption that a sig-
ificant part of the correlations between PC/PCC and lTPC were not
aused by cyclic artifacts. This is in line with a previous study which
howed that the correlations in the resting state network are not
ue to changes in blood oxygenation caused by slow fluctuations in
reathing rate or depth (Birn, Diamond, Smith, & Bandettini, 2006).

n summary, our findings clearly outline the necessity to include
ophisticated artifact removal algorithms such as RETROICOR into
he standard fcMRI preprocessing pipeline even when using real-
stic seed regions which are only moderately affected by cyclic
rtifacts.

.3. Comparison of artifact removal methods

Our data show that, as predicted by Lund (2001a), standard low-
ass filtering does not adequately remove artificial correlations
rom fcMRI data. In the present paper we used harmonic regression
o remove the cyclic cardiac and respiratory artifacts. A number of
lternative methods with different advantages and requirements
ave been suggested in the literature (e.g., Biswal et al., 1996; Frank,
uxton, & Wong, 2001; Glover et al., 2000; Hu et al., 1995; Josephs,
owseman, Friston, & Turner, 2001; Lund, 2001b; Lund et al., 2006;
itra et al., 1997; Thomas, Harshman, & Menon, 2002). A review

f most of these methods is provided in Lund et al. (2006). It was
eyond the scope of our study to systematically compare the effec-
ivity of these methods. All of these methods have been shown to
emove significant fractions of the artifacts. Our results suggest that
ither one of them will help reduce the number of false positive
orrelations.

. Conclusions

Our results show that standard preprocessing steps which
nclude spatial and temporal low-pass filtering are not sufficient
o exclude artificial correlations in studies of functional connectiv-
ty, unless the TR is short enough to prevent aliasing. The precise
patial pattern of artificial correlations depends on the interaction
f a number of factors such as TR, cardiac frequency, respiratory
requency, slice-timing and slice orientation. These intricate inter-
ctions may give rise to spatial patterns of artificial correlations
hich are hard to distinguish from patterns of neuronally driven
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