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Abstract
It is currently unclear to what extent cortical structures are required for and engaged during
subconscious processing of biologically salient affective stimuli (i.e. the ‘low-road’ vs. ‘many-
roads’ hypotheses). Here we show that cortical-cortical and cortical-subcortical functional
connectivity (FC) contain substantially more information, relative to subcortical-subcortical FC
(i.e. ‘subcortical alarm’ and other limbic regions), that predicts subliminal fearful face processing
within individuals using training data from separate subjects. A plot of classification accuracy vs.
number of selected whole-brain FC features revealed 92% accuracy when learning was based on
the top 8 features from each training set. The most informative FC was between right amygdala
and precuneus, which increased during subliminal fear conditions, while left and right amygdala
FC decreased, suggesting a bilateral decoupling of this key limbic region during processing of
subliminal fear-related stimuli. Other informative FC included angular gyrus, middle temporal
gyrus and cerebellum. These findings identify FC that decodes subliminally perceived, task-
irrelevant affective stimuli, and suggest that cortical structures are actively engaged by and appear
to be essential for subliminal fear processing.

Keywords
functional networks; brain-reading; emotion processing; subconscious threat detection

Introduction
The human brain has evolved specialized neural mechanisms for recognizing and processing
the emotional expressions of faces (Adolphs 2001). Of particular importance are faces with
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fearful expressions, which are thought to signal the presence of a source of danger within the
environment (Ewbank et al., 2009). It is commonly assumed that threat-related and other
biologically salient affective signals are processed automatically, without the requirement of
awareness or attention, by a sub-cortical pathway involving the superior colliculus, pulvinar
and amygdala (i.e. ‘subcortical alarm’ system, or ‘low road’ hypothesis) (Liddell et al.,
2005; Tamietto and de Gelder 2010). However, recent evidence has initiated debate
regarding the extent to which these stimuli engage and rely upon cortical networks that are
coordinated by sub-cortical regions such as the amygdala and thalamus (i.e. the ‘many
roads’ and related hypotheses) (Pessoa and Adolphs 2010).

Evidence arguing for the ‘many-roads’ hypothesis includes anatomical and physiological
data in animal models, and behavioral, non-invasive neurophysiology and lesion studies in
humans, while data to support the ‘low-roads’ hypothesis in humans has included group
neuroimaging studies that have reported greater activation in sub-cortical “alarm” regions
for subliminal affective stimuli relative to non-affective stimuli (Liddell et al., 2005) as well
as increased covariation of right amygdala with pulvinar and superior colliculus during
masked fear conditioning using Positron Emission Tomography (PET) imaging (Morris,
Ohman, Dolan 1999) (see de Gelder, van Honk, Tamietto 2011; Pessoa and Adolphs 2010;
Pessoa and Adolphs 2011; Tamietto and de Gelder 2010) for detailed reviews and
perspectives).

Compared to multivariate pattern analyses which take into account the joint responses (or
covariations) of multiple brain regions, group GLM neuroimaging approaches are relatively
insensitive due to loss-of-signal from averaging across many sessions and subjects (Cox and
Savoy 2003; Norman et al., 2006). An alternative and complementary approach, that could
reduce signal-loss and the risk of false positives is to apply multivariate pattern analysis to
identify regions of the brain that contain enough information to distinguish between
subconscious presentation of biologically salient affective and non-affective stimuli, such as
masked fearful and neutral faces.

Although the neural correlates of subliminal (both either task- and task-irrelevant) and
threat-related emotional face processing have been extensively investigated using group
fMRI studies (Etkin et al., 2004; Fusar-Poli et al., 2009; Kouider et al., 2009; Liddell et al.,
2005; Pessoa 2005) as well as group EEG (Kiss and Eimer 2008; Pegna et al., 2011),
features of brain activity that contain sufficient information to reliably decode, or “brain-
read”, the emotional expression of subliminally processed faces remain to be identified.
Identifying such features could be a crucial step towards understanding the subconscious
encoding and processing of affective facial stimuli, since these features would have a greater
capacity (though less well quantified) for representing distinctions between fear- and non-
fear- related cognitive-emotional perceptual states than those previously identified through
standard brain mapping approaches (Norman et al., 2006). This is a particularly important
goal given that deficits in facial affect processing are thought to underlie psychiatric
disorders such schizophrenia, autism, and anxiety (Harms, Martin, Wallace 2010; Machado-
de-Sousa et al., 2010).

Decoding, or predicting, a presented stimulus or cognitive state based on brain activity has
mostly relied on multi-voxel pattern analysis (MVPA) approaches that take into account the
joint, multivariate response of multiple voxels and/or brain regions (see (Norman et al.,
2006) for a review). The above approaches have been increasingly applied toward the
problem of identifying features of brain activity that can decode explicit emotional face
perception (see discussion for a brief review). Statistically significant, albeit modest,
decoding accuracies have been demonstrated when using activation (i.e. either
instantaneous, time-averaged activity or summary measures of activation such as beta
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estimates derived from SPM maps) of spatially distributed voxels or regions as input
features when predicting the emotional expressions of perceived faces. However, like most
other complex brain processes, threat-related stimuli and face perception consists of the
coordinated functional connectivity among distributed cortical and sub-cortical brain regions
(Ishai, Schmidt, Boesiger 2005; Kober et al., 2008; Vuilleumier and Pourtois 2007). Hence,
whole-brain functional connectivity patterns may be more informative than spatial activation
patterns when decoding subliminally processed facial emotion.

The current fMRI study employed a blocked design in which subjects were instructed to
identify the color of pseudo-colored masked fearful and neutral faces (Etkin et al., 2004).
Our primary objective was to test the hypothesis that whole-brain functional connectivity
(here Pearson correlation using 40 or 10 time points of fMRI data per example) can
discriminate between task-irrelevant and subliminally presented (backwardly masked)
fearful and neutral faces, and to identify the functional connections that are most informative
in this decoding task. Our secondary objective was to directly assess and compare the
decoding ability of correlations that were restricted to regions of the ‘sub-cortical alarm
pathway’ and other limbic regions. Finally, we compared the decoding accuracies achieved
when using functional connectivity (FC, or pair-wise correlations) vs. activity (i.e. beta
estimates from SPM maps). We show that a small subset of connections estimated across the
whole-brain (most of which are cortical-subcortical and cortical-cortical that include
temporo-parietal regions), can “brain-read” subliminally presented fearful faces with
significantly higher accuracies than subcortical-subcortical functional connections restricted
to ‘subcortical alarm’ and other limbic regions. In addition, patterns of spatial activity were
significantly less informative than whole-brain FC in discriminating between these two
conditions. These findings support the notion that the cortex plays an active and essential
role in subliminal affect processing, and that this neural processing is sub-served by
complex interactions among distributed brain regions.

Materials and Methods
Subjects

A total of 38 (19 female) healthy volunteers (mean age = 29, SD = 6.9) with emmetropic or
corrected-to-emmetropic vision participated in the study in accordance with institutional
guidelines for research with human subjects. All subjects were screened to rule out severe
psychopathology.

Stimuli Presentation Paradigm
Subjects performed a previously reported task (Etkin, Klemenhagen et al. 2004) which
consists of color identification of masked and unmasked fearful and neutral faces
(Supplementary Fig 1). Results for unmasked conditions, which were used to address
separate questions about processing of supraliminal fearful stimuli from those considered
here, will be presented elsewhere (submitted).

Stimuli—Black and white pictures of male and female faces showing fearful and neutral
facial expressions were chosen from a standardized series developed by Ekman and Friesen
(1976). Faces were cropped into an elliptical shape that eliminated background, hair, and
jewelry cues and were oriented to maximize inter-stimulus alignment of eyes and mouths.
Faces were then artificially colorized (red, yellow, or blue) and equalized for luminosity.
The stimulus pool consisted of twelve different i-dentities, each with two expressions
(fearful and neutral). Each identity and expression was repeated for each of the three colors
(red, yellow and blue.) For the training task, only neutral expression faces were used from
an unrelated set available in the lab. These faces were also cropped and colorized as above.
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Behavioral task—Each trial consists of fixation cue (200 ms) at the center of the screen,
followed by a blank screen (400 ms) and a face presentation (200 ms). Subjects were given
1200 ms to respond with a key press indicating the color of the face. Behavioral responses
and reaction times were recorded. All face stimuli were backwardly masked which consisted
of 33 ms of a fearful or neutral face, followed by 167 ms of a neutral face mask belonging to
a different individual, but of the same color and gender (see Supplementary Figure 1). Each
epoch consisted of ten trials of the same stimulus type, but randomized with respect to
gender and color, and there were 8 total epochs (four per stimulus type). To avoid stimulus
order effects, we used two different counterbalanced run orders. Stimuli were presented
using Presentation software (Neurobehavioral Systems, http://nbs.neuro-bs.com), and were
triggered by the first radio frequency pulse for the functional run. The stimuli were
displayed on VisuaStim XGA LCD screen goggles (Resonance Technology, Northridge,
CA). The screen resolution was 800X600, with a refresh rate of 60 Hz. After first entering
the scanner, subjects were trained in the color identification task using unrelated, nonmasked
neutral face stimuli that were cropped, colorized, and presented in the same manner as
described above in order to avoid learning effects during the functional run. Additionally,
while still in the scanner and after the main presentation paradigm, subjects were
administered a forced-choice test under the same presentation conditions as the functional
run and asked to indicate whether they saw a fearful face or not. These data were used to
determine d-prime (d’) values using the formula: d’ = z(hit rate) − z(false alarm rate), where
z represents transformation to z-scores. After the imaging session, subjects were shown the
stimuli again, alerted to the presence of masked faces, and asked to indicate whether they
had been aware of fearful faces.

fMRI Acquisition and Analyses
fMRI Data Acquisition—Functional images were acquired on a 1.5 Tesla GE Signa MRI
scanner, using a gradient-echo, T2*-weighted echoplanar imaging (EPI) with blood oxygen
level-dependent (BOLD) contrast pulse sequence. Twenty-four contiguous axial slices were
acquired along the AC-PC plane, with a 64 × 64 matrix (voxel size 3.125 × 3.125 × 4 mm,
TR = 2000, TE = 40, flip angle = 60). Structural data were acquired using a 3D T1-weighted
spoiled gradient recalled (SPGR) pulse sequence with isomorphic voxels (1 × 1 × mm) in a
256 × 256 matrix, ~186 slices, TR 34 ms, TE 3 ms.

GLM analysis—Functional data were processed in SPM8 (Wellcome Department of
Imaging Neuroscience, London, UK). For preprocessing, the realigned T2*-weighted
volumes were slice-time corrected, spatially transformed to a standardized brain (Montreal
Neurologic Institute) and smoothed with a 8-mm full-width half-maximum Gaussian kernel.
1st-level regressors were created by convolving the onset of each block (MF, MN, F and N)
with the canonical HRF with duration of 20 seconds. Additional nuisance regressors
included 6 motion parameters, white matter and csf signal, which were removed prior to
time-series extraction.

Node definitions—Brain regions were parcellated according to bilateral versions of the
Harvard-Oxford Cortical and sub-cortical atlases and the AAL atlas (cerebellum) and were
trimmed to ensure no overlap with each other and to ensure inclusion of only voxels shared
by all subjects (Figure 2A top, Supplementary Figure 2A). For each subject, time-series
across the whole run (283 TRs) were extracted using Singular Value Decomposition (SVD)
and custom modifications to the Volumes-of-Interest (VOI) code within SPM8 to retain the
top 2 eigenvariates from each region. This resulted in a total of 270 nodes with an associated
time course (i.e. eigenvariates) and ROIs (spatial eigenmaps) from the 135 initial atlas-based
regions (Figure 2A bottom, Supplementary Figure 2B). For anatomical display purposes,
ROI locations were defined in MNI coordinates at the peak value of each eigenmap
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averaged over all subjects. We used SVD (as opposed to simply the mean signal in each
atlas-based region) to avoid inadvertently ignoring and/or averaging away important
variation within (particularly larger) regions.

Functional connectivity networks for subliminal fearful and neutral face
processing—For each subject, functional connectivity matrices (i.e. where cell i,j contains
the Pearson correlation between region i and region j) were generated for masked fearful
(MF) and masked neutral (MN) conditions. Time series were high-pass filtered (periods
above 128 s were removed) and adjusted for effects-of-interest (i.e. effects of session mean,
white matter and csf signal were removed), and were then segmented and concatenated
according to conditions of interest (40 total time points per condition, incorporating a lag of
2 or 3 s from the start of each block) before generating the correlation matrices. We
concatenated time courses from each of the four 4 blocks per condition in order to maximize
the quality of the estimated FC measures (i.e. decrease the noise in the pairwise
correlations). Fisher’s R to Z transform was then applied to each resulting correlation
matrix. Finally for the binary classification of interest (i.e. MF vs. MN), correlation matrices
were demeaned with respect to the average between the two conditions in order to remove
the effects of inter-subject variability. The lower triangle of the above preprocessed
correlation matrices (38 subjects X 2 conditions total) were then used as input features to
predict viewed stimuli.

Pattern analysis of large-scale functional connectivity to predict subliminal
(and implicit) fear perception—Support vector machines (SVM) are pattern recognition
methods that find functions of the data that facilitate classification (Vapnik 1999). During
the training phase, an SVM finds the hyperplane that best separates the examples in the
input space according to a class label, where ‘best’ is defined by constraints (maximum
margin and the slack variables that allow for a soft margin). The SVM classifier is trained by
providing examples of the form <x,c>, where x represents a spatial pattern and c is the class
label. In particular, x represents the fMRI data (pattern of correlation strengths) and c is the
condition or group label (i.e. c = 1 for MF and c = −1 for MN). Once the decision function is
determined from the training data, it can be used to predict the class label of new test
examples.

For all binary classification tasks, we applied a linear kernel SVM with a filtering feature
selection based on t-test and leave-two-out cross validation (LTOCV). There were 38
examples for each condition (2 from each subject, 76 total). During each iteration of 38
rounds of LTOCV, both examples (1 from each class) from one subject were withheld from
the dataset and 1) a paired t-test was performed over the remaining training data (N=37 in
each group) 2) the features were ranked by absolute t-score and the top N were selected 3)
these selected features were then used to predict the class of the withheld test examples
during the classification stage. The full feature set for each example consisted of 36,315
correlations.

If the classifier predicted all trials as positive or negative, the resulting accuracy would be
50% since the number of examples are equal for each class. We therefore report
classification accuracy (number of true positives and negatives over all trials) vs. number of
included features that have been ranked by their t-score. We first examined whole-brain FC
based on concatenated time-series and plotted classification accuracy vs. every 5 features
from the top 1 through 200 (the maximum number was chosen heuristically based on
(Dosenbach et al., 2010)). Other than a peak near 10 features, accuracies hovered near 50%.
Therefore we changed the range to every single feature from top 1 through 20. For sub-
cortical ‘alarm’ FC we used the same initial range (5 to 200) to confirm that accuracies also
hovered near 50% beyond 10 features, and then plotted results using 1 to 20 features as
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above. We also plotted the null distribution and assessed the significance of peak decoding
results by computing the frequency in which actual values surpassed those from null
distributions derived by randomly permuting class labels. To derive this null distribution,
class labels within each pair conditions from each subject were randomly flipped with a
probability of 0.5 over 10000 iterations (top N features at which peak accuracy was
achieved) or 50 iterations (for plots at each number of included features). Uncorrected p-
values were reported, and unless otherwise stated, p-values were also corrected at p<0.05 for
multiple comparisons using Bonferroni procedure. For plots, 95% Confidence Intervals
(95% CI) of the accuracy score were calculated using the normal approximation interval of
the binomial distribution: (p±Zc*√[p(1−p)/n], where p=TP+TN/(TP+FP+TN+FP), Zc=97.5
percentile of a standard normal distribution, and n=sample size. This formula was used as it
is the simplest and most commonly used to approximate confidence intervals for proportions
in a statistical population, and because there was adequate sample size and proportions were
not extremely close to 0 or 1 (Newcombe 1998).

For SVM learning and classification we used the Spider v1.71 Matlab toolbox
(http://people.kyb.tuebingen.mpg.de/spider/) using all default parameters (i.e. linear kernel
SVM, regularization parameter C=1). We attempted SVM learning using a radial basis
function kernel and sigma=2 as suggested previously (Dosenbach et al., 2010), but in
general performance results were no better than a linear kernel SVM. Thus all analysis used
default parameters. Graphical neuro-anatomical connectivity maps were displayed using
Caret v5.61 software (http://brainvis.wustl.edu/wiki/index.php/Caret:About).

For assessing the significance of the differences between decoding results (i.e. whole-brain
FC as features vs. subcortical FC) we used the Accurate Confidence Intervals MATLAB
toolbox for assessing whether the parameter p (probability of correct prediction) from two
independent binomial distributions was significantly different
(http://www.mathworks.com/matlabcentral/fileexchange/3031-accurate-confidence-
intervals). Briefly, these methods search for confidence intervals using an integration of the
Bayesian posterior with diffuse priors to measure the confidence level of the difference
between two proportions (Ross 2003). We used the code prop-diff(x1,n1,x2,n2,delta),
(available from the above website) returning Pr(p1–p2-δ), where x1, n1, x2, n2, are number of
correct responses and total predictions in two distributions being compared, and delta (zero
in our case) is the full hypothesis difference between the probabilities.

Results

Behavioral results—The average response rate in the color discrimination task was 98%
(stdev=4.6%), mean accuracy was 97% (stdev=3.5%), and mean reaction time was 0.65 s
(stdev=0.12), indicating that subjects performed the task as instructed. In the task used to
determine d’ scores (see methods), twelve subjects reported that no masked fearful face had
been presented). In the remaining subjects, mean observed d’ score was 0.13, std = 0.35, and
the max was 0.71 (~65% accuracy). A one-sample t-test confirmed these scores were not
significantly different than zero (p=0.07). We also included the twelve subjects who only
responded with misses and correct rejections. In order to do so we had to slightly adjust their
hit rate and false alarm from 0 and 1 to 0.01 and 0.99 respectively, since the z-transform is
undefined at 0 and 1. These subjects’ d’ scores thus all became -4.65, and when they were
included in a new one-sample t-test the overall scores were significantly negative
(p=0.0006). Taken together, the above results indicate that backward masking was
successful.

Discriminating between subliminal processing of fearful and neutral faces
with whole-brain patterns of functional connectivity—We applied atlas-based
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parcellation and computed pair-wise correlations between 270 cortical and sub-cortical brain
regions, or nodes, using 40 total time points of fMRI data that were segmented and
concatenated from two conditions; task-unrelated viewing of backwardly masked fearful
(MF) and neutral (MN) faces (Figure 1). This resulted in 36,315 total functional connections
(z-transformed Pearson correlations) for each condition (MF, MN). The atlas-based
parcellation scheme and average node locations are shown in Figure 2A and Supplementary
Figure 2, while MNI coordinates and labels corresponding to each node are listed in
Supplementary Table 1.

The extent to which a subset of these functional connections could decode, or predict, the
conditions from which they were derived was quantified by submitting them as features into
a linear kernel SVM pattern classifier using filter feature selection based on the t-score of
each feature (functional connectivity) in each training set. Decoding accuracies for
subliminal fearful vs. neutral classifications (MF vs. MN) were plotted against the number
of included features (ranked in descending order by t-score) in order to approximate the
number of informative features relevant to the emotional expression of the facial stimulus. If
there is a true signal present in the data, we expect that there should be an initial rise in
accuracy as more informative features are added to the feature set, and a dip in accuracy as
less informative features (i.e. noise) are added to the feature set. This is indeed what we
observed. For MF vs. MN classification, accuracy reached a maximum of 92% (p < 0.0001)
when learning was based on the top 8 features in each training set (Figure 2B).

When extracting only one eigenvariates per region, maximum accuracy reached 87% at with
the top 4 features (data not shown). When computing classification accuracy when only
using the second eigenvariate from each atlas-based region, classification reached a
maximum accuracy of 78% at one feature (data not shown). The highest classification
accuracy (92%, Figure 2B) was achieved when using both first and second eigenvariates
from each atlas-based region, indicating that correlations between the first and second
eigenvariate (of different regions) made substantial contributions in decoding subliminal
fear. We note that this means that in some instances node 2 of a particular region showed
functional connectivity that differentiated between conditions and node 1 of the same region
had no differential connectivity. This is possibly due to the fact that atlas-based parcellation
is somewhat arbitrary, and that large regions encompassed many other functionally relevant
subregions which were not included when only extracting the top eigenvariate. Another
possible reason is that for many regions, the first eigenvariate may reflect artifact global or
mean grey matter signal (while white matter and csf signal were regressed out from nodes’
time-series, global and mean grey matter signals were not).

Although time-series were high-pass filtered and white-matter and csf signal was removed,
it is possible that slow frequency drifts (just below periods of 128 s and manifesting within
global grey matter signal) remained, and that these drifts could have artificially increased the
variance in (and hence affect the correlation between) the concatenated time series. Given
our use of counterbalanced designs, this effect should not have been enhanced in the
concatenated time-series from one condition over the other, and hence any differences in FC
between conditions should be attributed to differences in stimulus features of subliminally
presented faces, not the above-mentioned potential artifacts. Nevertheless, we explicitly
tested the extent to which differences in the mean and variance of signal across the session
blocks (stemming from condition-related differences, low frequency artifact drift or
physiological noise, etc.) may have contributed to the correlations that discriminated
between the two conditions of interest. For this we compared classification rate of the top 8
features listed in table 1 using their original correlations vs. recomputed correlations
whereby time points within each segment were first converted to z-scores prior to
concatenation. This step resulted in only a 2% decrease in classification rate (97% without z-
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scoring, 95% with z-scoring) for these eight features, indicating that the effects of
concatenation on the computed correlations were minimal.

Discriminating between MF and MN faces using functional connectivity
among ‘subcortical alarm’ system and other limbic regions—Previous work in
animal models confirms a sub-cortical “alarm” pathway for fast and subliminal fear
processing through the superior colliculus, pulvinar and amygdala (Tamietto and de Gelder
2010). However, direct evidence for this pathway in humans is sparse (Pessoa and Adolphs
2010). We tested whether functional connectivity among these and other sub-cortical and
limbic ROIs could discriminate between masked threat-related and neutral facial stimuli
using masks for left and right dorsal and ventral amygdala, pulvinar, insula, anterior
cingulate, hippocampus, caudate and bilateral superior colliculus and locus ceruleus (Figure
2C). Classifications used pair-wise functional connections amongst the above regions (32
nodes, 496 total features) and were performed as above (Figure 2B, right panel). In contrast
to peak decoding results obtained when using functional connections across the whole-brain
(92%), MF vs. MN discrimination using features restricted to ‘sub-cortical alarm’ and
limbic regions only reached a peak accuracy of 79% (p < 0.0001) at the top 1 feature (Figure
2D, R Caudate – R Insula, MF > MN T-value=3.68). Thus classification accuracy using only
subcortical ‘alarm’ and limbic ROIs was less effective than using ROIs throughout the
whole-brain.

To ensure that results were not degraded by imperfections in registration that would
particularly affect smaller subcortical structures such as superior colliculus, an additional
analysis was performed which included larger subcortical structures. All these ROIs were a
subset of those included in the whole-brain analysis conducted above, which were
parcellated according to the Harvard Oxford Subcortical Atlas. These included bilateral
thalamus, midbrain and pons (which were derived from the whole brain-stem ROI, and are
depicted in Fig 2, left panel, z=0), amygdala, hippocampus, pallidum, putamen, anterior and
posterior parahippocampal gyrus, caudate and nucleus accumbens. In addition, the top four
(instead of two) eigenvariates were extracted from each region, resulting in 80 total nodes.
Peak classification accuracy (82%, p < 0.0001) was achieved when selecting two features,
which included the previously identified bilateral amygdala functional connection (Table 1,
last row) and a connection between amygdala (second eigenvariate) and pons (third
eigenvariate), which increased during fear and was included in 36/38 rounds of cross-
validation (data not shown).

Discriminating between MF and MN faces with patterns of activation—To
compare the information content of patterns of functional connectivity (i.e. functional
connections used above) vs. patterns of neural activity, we also performed MF vs. MN
classification using beta estimates, which are scaling factors estimated from the General
Linear Model and can be considered a summary measure of activation to each condition.
Our primary goal was to assess the relative classification performances when using “betas”
as features under “best-case scenario” conditions. Thus we employed a single, biased
feature-selection step in which features (voxels) were chosen based on an F-test conducted
over the entire data set. An inclusion mask was defined from an F-test of the contrast MF >
MN (p < 0.05, k=30: 6,248 total features, Figure 3A, yellow). Accuracies were plotted
against the number of included features ranging from 1 to 6000. In spite of biased feature
selection, MF vs. MN classification only reached a maximum of 79% accuracy (p<0.0001,
Figure 3B).

In addition to using whole-brain beta maps, we derived beta weights using the same
summary time courses (eigenvariates) that were extracted and used to compute pairwise FC
(270 total betas per condition per subject). For this, the GLM analysis was kept the same as
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above except that previously included nuisance regressors (6 motion, mean white and mean
csf) and a low-pass filter were not included, since they were already removed from the time
courses during extraction. Resulting estimated beta weights were then used as features to
predict fearful vs. neutral faces using the exact same procedure when using whole-brain FC.
For this analysis feature selection was unbiased, using filter feature selection during leave-
two-out cross validation. Peak accuracy of 71% (p=0.0036 uncorrected, not significant after
Bonferroni correction for multiple comparisons) was achieved at top 5 features.

Top FC features that discriminated between MF and MN faces—We formally
compared the “information content” of whole-brain FC vs. subcortical alarm FC and whole-
brain betas when used as features in predicting MF vs. MN faces. For this we tested for
significant differences between the maximum classification accuracies achieved for whole-
brain FC vs. the other two (see methods). The maximum accuracy for whole-brain FC (92%)
was significantly greater that maximum accuracy achieved with sub-cortical ‘alarm’ FC
(79%) (p = 0.01) as well as the peak accuracy achieved whole-brain beta values with biased
feature selection (79%) (p=0.01).

Anatomical display of the top 8 overall whole-brain FC features that discriminated between
MF and MN conditions revealed functional connections among regions in right middle
temporal gyrus, angular gyrus, amygdala, cerebellum, precuneus and anterior cingulate
(Figure 4, Table 1). The connection that carried the most weight in the linear SVM classifier
was between right amygdala and precuneus, which exhibited a greater correlation in the MF
vs. MN condition. The most informative feature when decoding using subcortical ‘alarm’
and limbic regions is listed in Supplementary Table 3.

Discussion
The current work demonstrates that patterns of functional connectivity (pair-wise cortical-
cortical and subcortical-cortical functional connections) contain sufficient information to
decode the emotional expression of task-irrelevant, subliminally presented faces. The
connections that discriminated between subliminally presented fearful and neutral faces
included amygdala, temporo-occipital and temporo-parietal regions, with the majority of
connections involving the posterior and anterior middle temporal gyrus (in the vicinity of the
superior temporal sulcus, STS). This is consistent with models and studies of emotional face
recognition that identify the STS and middle temporal gyrus as a primary neural substrate
for suprathreshold processing of the emotional expression of faces (Haxby, Hoffman,
Gobbini 2002; Sabatinelli et al., 2011; Said et al., 2010). Importantly, the current results
suggest these cortical regions are also engaged and required during subliminal and task-
irrelevant emotional face processing, and furthermore, that functional interactions of STS
with temporo-parietal, temporo-occipital and cerebellar regions are also critically involved
in subliminal emotional face processing. In addition, we observed that functional
connections restricted to the ‘subcortical alarm’ pathway were not sufficient to decode
subliminal emotion perception (Figure 5). Taken together, these observations support the
notion that the cortex plays a more important role in the processing of subliminal affective
visual information than is typically acknowledged (Pessoa and Adolphs 2010).

Interestingly, we observed that the functional connectivity between left and right amygdala
was among the most informative features that distinguished between the MF and MN
conditions. Moreover, left and right amygdala exhibited a more positive correlation during
the masked neutral face condition relative to the masked fearful face condition (Table 1, last
row), suggesting bilateral functional decoupling during the MF condition. In addition, the
most informative feature distinguishing between the MF and MN conditions was between
right amygdala and right precuneus (Figure 3B, connection 1), which exhibited higher

Pantazatos et al. Page 9

Neuroimage. Author manuscript; available in PMC 2013 July 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



correlation during the MF condition (Table 1, first row). Taken together, the above
observations suggest a decrease in bilateral amygdala coupling and increased connectivity of
the right amygdala with extra-striate visual attentional areas during subliminal fear
processing. These observations are consistent with previous studies suggesting that the right
amygdala is more involved during automatic, subliminal and unintentional mood induction,
whereas the left amygdala is more involved during supraliminal perception and intentional,
cognitive mood induction engaged during explicit reflection processes (Dyck et al., 2011;
Williams et al., 2006).

“Information content” of neural activity vs. functional connectivity—Multi-
voxel pattern analysis (MVPA) methods have been successful in decoding categories of
viewed stimuli (Cox and Savoy 2003; Hanson, Matsuka, Haxby 2004; Haxby et al., 2001;
Mourao-Miranda et al., 2005; O’Toole et al., 2005), orientation (Haynes and Rees 2005;
Kamitani and Tong 2005), the decisions made during a near-threshold fearful face
discrimination task (Pessoa and Padmala 2007), and decoding explicit emotion perception
(Peelen, Atkinson, Vuilleumier 2010; Said et al., 2010; Tsuchiya et al., 2008). However,
complex and subtle cognitive and affective processes such as those that are engaged by
subliminally presented emotional faces, and which entail interactions among many
distributed regions, may not be adequately captured or represented by patterns of spatial
activation, when using typical imaging parameters used for whole-brain imaging and
particularly when the activity in each region is averaged over several or more time points to
increase signal to noise. Instead, the pattern of functional connectivity, (i.e. pair-wise
correlations or other measures of large-scale functional connectivity), may be a relatively
more sensitive and informative representation of such brain-states compared to patterns of
activity. (However, we speculate that with the increasing sensitivity, spatial and temporal
resolution of fMRI, decoding subliminal emotion perception based on fine-grained activity
patterns within key regions (i.e. amygdala, fusiform, superior-temporal sulcus), and
particularly within single subjects, should be feasible.)

Large-scale functional connectivity (i.e. thousands of pair-wise function connections) and
network analysis has been increasingly used as the tool of choice for extracting meaningful
and understanding complex brain organization (Li et al., 2009; Smith et al., 2011). A
previous group study, which did not apply MVPA but instead averaged each connection
over multiple subjects in a univariate fashion, demonstrated condition dependent
modulations in pair-wise (41 nodes) functional connectivity across various syntactical
language production tasks (Dodel et al., 2005). More recently, pattern analysis on large-
scale functional connections obtained from resting state data were used to predict individual
maturity (Dosenbach et al., 2010) as well as subject-driven mental states such as memory
retrieval, silent-singing vs. mental arithmetic and watching movies vs. rest (Richiardi et al.,
2011). Here we used stimulus-associated, condition-dependent functional connectivity to
discriminate between subconscious cognitive-emotional processing states within individual
subjects.

Previous work based on simulations has indicated that correlation-based methods, including
Pearson correlation, are in general quite successful in capturing true network connections
(Smith et al., 2011). Here we show that Pearson correlation can be used to estimate
connections that decode (“brain-read”) the emotional expression of a face that was
subliminally presented during each block from which they were derived. We also compared
the decoding accuracy when using correlations as features versus beta estimates (i.e.
summary measures of activation to each condition at each voxel). We observed that, even
with feature-selection based on the entire data set which positively biased results, peak
decoding accuracies for betas were lower than those reached when using correlations as
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features (betas: MF vs. MN peak accuracy 78%, MF vs. MN peak accuracy 92%). This
suggests that there is substantially more information, relevant to subliminal cognitive-
emotional neural processing, that is contained in the interactions between regions than is
typically realized through standard univariate approaches. However, it should be noted that
this requires enough time-points to compute meaningful correlations between brain regions
for a particular condition, and would thus in general be impractical for decoding single-trial
or event-related data.

Subliminal vs. supraliminal fearful face processing—The same method used here
was recently applied to decode supraliminal (200 ms presentation prior to backward
masking), as opposed to subliminal (67 ms presentation prior to backward masking, fearful
vs. neutral faces (Pantazatos, et. al. PLoS Comp Bio, in press). As expected, supraliminal
emotional stimuli were more distinguishable than subliminal stimuli, as evidenced by higher
maximum accuracies (90–100%) achieved across a wider range of features (15–35) for
supraliminal stimuli. As in the current work, many of the connections that distinguished
between supraliminal emotion stimuli included STS and middle temporal gyrus. However,
by and large, there was little to no overlap between the most informative connections that
discriminated between subliminal fearful and neutral faces presented in the current work and
the most informative features that discriminated between supraliminal fearful and neutral
faces. Whereas the current results show that the right amygdala plays a prominent role in
distinguishing subliminal affective stimuli, for supraliminal stimuli, the most positively
modulated FC was between angular gyrus and hippocampus, while the greatest overall
contributing region was the thalamus, with positively modulated connections to bilateral
middle temporal gyrus/STS and insula during supraliminal fearful (vs. supraliminal neutral
face) processing. These results are consistent with the observation that the thalamus
(pulvinar) is relatively more active for attended and consciously-perceived affective stimuli
(Pessoa and Adolphs 2010), and also with the idea that separable and largely non-
overlapping neural regions and mechanisms may underlie conscious vs. non-conscious
processing of affective stimuli (Etkin et al., 2004; Tamietto and de Gelder 2010).

Limitations
Using Pearson correlation, it is possible that any association between two brain regions is
the result of a spurious association with a third brain region. Likely candidates for this third
region are the pulvinar (located in the posterior thalamus) and amygdala, which are
proposed to act as hubs integrating the activity of multiple cortical areas during sub-
threshold emotional stimulus processing (de Gelder, van Honk, Tamietto 2011; Pessoa and
Adolphs 2010). The current analysis may have neglected to account for functional
contributions of the pulvinar since we extracted the top two principal components from the
whole thalamus; thus possible future experiments would explicitly define the pulvinar
separately from the rest of the thalamus.

Another possible limitation of the current study is the required amount of data used to
extract quality features of brain activity. Our use of correlations as features required a
substantial number of time points (i.e. 40 time points per condition per subject) relative to
previous studies of decoding emotion perception. Given this, it was not feasible to sample
enough examples within a single or few subjects as is typical in multivariate pattern analysis
studies, and we instead pooled examples across multiple subjects. On the other hand, the fact
that reliable classifiers could be learned using examples from separate subjects speaks to the
generalizability of our obtained results.

Previous simulations have raised concerns regarding the use of atlas-based approaches for
parcellating the brain (Smith et al., 2011). Because the spatial ROIs used to extract average
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time-series for a brain region do not likely match well the actual functional boundaries,
BOLD time-series from neighboring nodes are likely mixed with each other. While this
hampers the ability to detect functional connections between neighboring regions, it has
minimal effect on estimating functional connectivity between distant regions. This perhaps
explains why in this study most of the functional connections that discriminated between
fearful and neutral faces are long-distance. Future experiments using non-atlas based
approaches would likely lead to better estimates of shorter-range functional connections.

In addition to the choice of parcellation schemes, decoding results were also affected by the
number of eigenvariates extracted from each region. Extracting only one eigenvariate from
each region did not contain sufficient information to decode subliminal fear (data not
shown), whereas extracting two eigenvariates did. Extracting three and four eigenvariates
resulted in a decrease in decoding accuracies (data not shown), probably because the
exponential increase in estimated edges among the nodes led to increased likelihood of
“false-positives” being selected during the linear filter feature selection. Future studies
should explore more sophisticated methods of feature selection that could better exploit and
select informative features from higher-dimensional feature spaces.

Conclusions
The current work demonstrates that large-scale functional connections between cortical-
cortical and cortical-sub-cortical regions are sensitive features of brain activity that can
decode task-irrelevant, subliminal emotion processing. In contrast, sub-cortical-sub-cortical
functional connections, particularly among ‘sub-cortical alarm’ regions, contained less
information for this decoding task, as did patterns of spatial activity. These data are
consistent with the notion that interactions that include cortical regions are employed for the
subconscious processing of biologically salient affective stimuli. In addition, the pattern of
connections (edges of a weighted graph) between regions is an informative and sensitive
signature of subconscious cognitive-emotional brain states.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Data analysis scheme
Time series from each condition (masked fearful and masked neutral, MF and MN) and for
N regions (R1 though RN) were segmented from each subject’s whole run and concatenated
(concatenation of two blocks for each condition shown in figure). Each event (stimulus
presentation) consisted of 33 ms presentation of the backwardly masked face followed by
167 ms of a neutral face of different identity, and there were 10 events spaced 2 s apart in
each block. There were four 20 second (10 scan) blocks of each condition; hence each
example was comprised of 40 time points per condition per subject. For each example,
correlation matrices were estimated in which each off-diagonal element contained Pearson’s
correlation coefficient between region i and region j. The lower diagonal of each of these
matrices were used as input features in subsequent classifiers that learned to predict the
example (i.e. MF or MN) based on their observed patterns of the correlations. Here, we used
a filter feature selection based on t-scores in the training sets during each iteration of leave-
two-out cross validation. The difference map consists of the set of most informative features
(those that are included in the most rounds of cross-validation and have the highest SVM
weights.)
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Fig. 2. Large-scale functional connectivity discriminates between processing of masked fearful
and neutral faces
(A) Slice depicting anatomic parcellation scheme and average node locations (see also
methods and Supplementary Figure 2A–B). (B) Decoding accuracy when classifying MF vs.
MN as a function of the number of features (1 to 20) ranked in descending order by their
absolute t-score. Maximum accuracy for MF vs. MN classification (92%, p < 0.0001) was
achieved when learning was based on the top 8 features in each training set. (C)
Discriminating subliminal fear using large-scale connectivity among “subcortical alarm” and
other limbic regions. Bilateral masks for hippocampus, dorsal and ventral amygdala, insula
and caudate, anterior cingulate, pulvinar and superior colliculus were defined using
WFU_pickatlas with the exception of superior colliculus and locus ceruleus, which were
manually drawn using FLSview (amygdala was manually separated into dorsal and ventral
regions along z=0). These regions produced 32 nodes (depicted in D, bottom) and 496 total
features. More slices of these regions and average MNI locations for each node are listed in
Supplemental Figure 2C and Supplementary Table 2 respectively. (D) Classifications using
pairwise correlations among the above regions as features and were performed similarly to
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those presented in Figure 2B. MF vs. MN classification reached a peak accuracy of 79% (p
< 0.0001) at 1 feature. Mean accuracy scores for randomly permuted data are plotted along
the bottom, and shaded grey regions represent 95% CI. (Because we permuted labels 50
times for each top N features, the total sample size for each null distribution was 50 times
greater than for the real distribution, and hence CI are smaller.)
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Fig. 3. Discriminating subliminal fear using beta estimates as features
(A) Features for MF vs. MN classification were selected based on an F-test of the contrast
MF>MN (p<0.05, k=30: 6,248 total features), respectively. (B) Classifications were
performed similar to main analyses in the text but over the range of 1 to 6000 ranked
features. Note that feature selection was biased by using a single mask based on the F-test
conducted over the complete data set. In spite of this, MF vs. MN classification only reached
a peak accuracy of 79% (p< 0.0001, not significant after Bonferroni correction for multiple
comparisons) with top 8 to 21 features. Shaded grey region represents 95% CI. Brain images
are displayed using Neurological convention (i.e. L=R).
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Fig. 4. Most informative overall features that discriminated between MF and MN faces
Ventral (A) and right lateralized (B) anatomical representation of the top 8 overall features.
Red indicates correlations that are greater in MF, and blue represents correlations that are
greater in MN. For display purposes, the color of each sphere is set according to the sign of
the sum of the SVM weights of each node’s connections; positive sign, red, MF > MN and
negative sign, blue, MN > MF, and the thickness of each connection was made proportional
to its weight. (C) Table of top 8 overall features depicted in panels A and B. All features
were first ranked according to the number of rounds of cross-validation in which they were
included during the filter feature selection (38 maximum). The top 8 from this list were then
ranked according to the absolute value of their averaged weight in the Support Vector
Machine (SVM). Abbreviations: R PreCu = Right Precuneous Cortex PC2; R Amg = Right
Amygdala PC1 (connection 1) and PC2 (connection 8); L Amg = Left Amygdala PC1; L
MTg = Left Middle Temporal Gyrus temporooccipital part PC2 (connection 4) and PC1
(connection 7); L Cer = Cerebelum 6 L PC1; R AG = Right Angular Gyrus PC2; R Cer =
Cerebelum 8 R PC2; R AFG = Right Temporal Fusiform Cortex anterior division PC1; R
SMg = Right Supramarginal Gyrus posterior division PC1; R MTg = Right Middle
Temporal Gyrus posterior division PC1; LACC = Left Cingulate Gyrus anterior division
PC1.
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