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Mindboggle: a scatterbrained approach to automate brain labeling
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Mindboggle (http://www.binarybottle.com/mindboggle.html) is a fully

automated, feature matching approach to label cortical structures and

activity anatomically in human brainMRI data. This approach does not

assume that the existence of component structures and their relative

spatial relationship is preserved from brain to brain, but instead

disassembles a labeled atlas and reassembles its pieces to match

corresponding pieces in an unlabeled subject brain before labeling.

Mindboggle: (1) converts linearly coregistered subject and atlas MRI

data into sulcus pieces, (2)matches each atlas piecewith a combination of

subject pieces by minimizing a cost function, (3) transforms atlas label

boundaries to the matching subject pieces, (4) warps atlas labels to their

transformed boundaries, and (5) propagates labels to fill remaining gaps

in a mask derived from the subject brain. We compared Mindboggle

with four registration methods: linear registration, and nonlinear

registration using SPM2, AIR, and ANIMAL. Automated labeling by

all of the nonlinear methods was found to be at least comparable with

linear registration. Mindboggle outperformed every other method, as

measured by the agreement between overlapping atlas labels and

manually assigned subject labels, with respect to the union or the

intersection of voxels. After applying the same procedure that Mind-

boggle uses to fill a subject’s segmented gray matter mask with labels

(step 5), the results of the other methods improved. However, after

performing a one-way ANOVA (and Tukey’s honestly significant

difference criterion) in a multiple comparison between the results

obtained by the different methods, Mindboggle was still found to be the

only nonlinear method whose labeling performance was significant

better than that of linear registration or SPM2. Further advantages to

Mindboggle include a high degree of robustness against image artifacts,

poor image quality, and incomplete brain data. We tested the latter

hypothesis by conducting all of the tests again, this time registering the

atlas to an artificially lesioned version of itself, and found that

Mindboggle was the only method whose performance did not degrade

significantly as the lesion size increased.
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Introduction

Current directions in neuroscience depend upon understanding

the relationship between human brain structures and mental

functions. It is common practice to associate functional imaging

data with anatomical regions and to compare structural and

functional data from corresponding regions across brains. Man-

ually assigning anatomical labels from a standard atlas, however,

requires expertise and is both tedious and time-consuming.

Furthermore, labeling is particularly sensitive to primary sources

of error that are independent of imaging hardware or software, such

as morphological variation across brains (Jouandet et al., 1989; Le

Goualher et al., 2000; Ono et al., 1990; Rademacher et al., 1993;

Steinmetz and Seitz, 1991; Steinmetz et al., 1994; Thompson et al.,

2000; Wright et al., 2002; Zilles et al., 1997, 2001) and

inconsistency within the labelings of one labeler and between

labelers (Caviness et al., 1996; Fiez et al., 2000; Lancaster et al.,

2000; Towle et al., 2003). Ideally, we would like to automate

labeling so that it is consistent, accurate, and efficient. Although

automated methods exist that mitigate errors due to human

inconsistency, the accuracy with which they handle the morpho-

logical variation from brain to brain has rarely been rigorously

assessed. In this paper, we address the need for more accurate fully

automated labeling tools by presenting our feature-based labeling

method called Mindboggle (Klein and Hirsch, 2001, 2002, 2003,

http://www.binarybottle.com/mindboggle.html) and compare

Mindboggle’s performance with that of several methods currently

in use.

Each approach to labeling the anatomy of an imaged brain has

its assumptions and weaknesses. A common assumption is that

topography is preserved from brain to brain, where topography

refers to the existence of component structures (such as sulci) and

their relative spatial relationship along the cortical surface. This

assumption may not be justifiable, as there may be missing or

interrupted sulci in some brains and the sequence of the sulci may

be different between brains (Ono et al., 1990), requiring cuts in one

brain’s surface to map onto another brain’s surface. Linear

coregistration of a brain and an atlas is the simplest method for

assigning correspondences. Linear (affine) registration may

involve up to 12 parameters representing translation, rotation,

scaling, and shearing about the x, y, and z axes. Linear registration

 http:\\www.binarybottle.com\mindboggle.html 
 http:\\www.binarybottle.com\mindboggle.html 


A. Klein, J. Hirsch / NeuroImage 24 (2005) 261–280262
assumes a bijective mapping that preserves topography and

because it is an operation performed on the whole brain volume,

it cannot be expected to coregister independent points well. Linear

coregistration therefore serves as a starting point for nonlinear

registration, where brain-to-brain correspondences are determined

in a non-uniform manner that may or may not be spatially

continuous.

Talairach registration

The forerunner of modern nonlinear registration methods is a

13 parameter, piecewise linear registration method using the

original Talairach coordinate referencing system (Talairach and

Szikla, 1967) and the revision of this system (Talairach and

Tournoux, 1988). This system prescribes orientation of a brain

by registering two medial landmarks to a pair of points in the

coordinate system (six parameters: three rotations, three trans-

lations), division of the brain by four orthogonal planes

intersecting these two points, and uniform scaling of brain

matter within the resulting 12 boxes so that the box dimensions

equal those of a postmortem elderly woman’s brain (seven

scaling parameters about the two landmarks: one between them

and six in anterior, posterior, inferior, superior, left, and right

directions). The system is well suited to labeling regions

proximal to these landmarks (Grachev et al., 1998), but assumes

a bijective map that is simply a uniform scaling within each box

and is discontinuous across these boxes. It therefore does not

deal adequately with nonlinear morphological differences,

especially when applied to the highly variable cortex (Grachev

et al., 1999; Mandl et al., 2000; Roland et al., 1997; Xiong et

al., 2000).

Nonlinear registration

Truly nonlinear registration is usually performed by warping

(nonlinearly deforming) one brain image to appear similar to

another. Although there is a vast array of nonlinear registration

techniques (reviewed in Maintz, 1996–1997; Maintz and

Viergever, 1998; Toga, 1999), much of present day work is

based on the fundamental ideas of Broit (1981) and Bajcsy and

Kovacic (1989). Traditionally, a brain image or mathematical

representation of brain contours, surfaces, or topological features

are treated as fluid or elastic bodies that are subjected to

deforming forces balanced by regularizing or smoothing forces

or constrained by a cost function (Christensen, 1999; Christen-

sen et al., 1994, 1996; D’Agostino et al., 2002, 2003a,b;

Davatzikos, 1996, 1998; Gaens et al., 1998; Gee, 1999; Gee et

al., 1993, 1995; Guimond et al., 2001; Liu et al., 2003; Miller et

al., 1993; Sandor and Leahy, 1997; Schormann and Zilles, 1998;

Shen and Davatzikos, 2002; Thompson and Toga, 1996; Vaillant

and Davatzikos, 1997). The smoothness constraint enforces

continuity and preserves topology, and usually topography as

well. The primary problem with relying solely on warping to

nonlinearly register one brain to another is that without

sufficient constraints, there are many ways to reshape a brain

to look like another without regard for anatomical borders.

Because point correspondence from one cortex to another is ill-

defined, some degree of manual intervention is often used to

initially assign corresponding points or curves about which

deformations are to be performed (Bookstein, 1989; Chui et al.,

1999; Evans et al., 1991; Hartkens et al., 2002; Johnson and
Christensen, 2001; Magnotta et al., 2003). It is also questionable

to assume that intervening points between two well-defined

landmarks correspond to intervening points between matching

landmarks. The point correspondence problem is simply

revisited at a smaller scale; if different anatomical structures

happen to exist between the corresponding pairs of landmarks in

two brains, there may be no point-to-point correspondence.

Moreover, the efficacy of many nonlinear registration strategies

is difficult to assess, as they are usually demonstrated with

restricted label sets or sparse landmarks and evaluated under

artificial conditions or most commonly by visual inspection,

where image correspondence is mistaken for anatomic corre-

spondence (Crum et al., 2003; Rogelj et al., 2002). For the

remaining sections, anatomic correspondence will be considered

at the scale of gross morphological structures (primary gyrii and

sulci); these structures are defined manually in each brain

primarily by their relative position, curvature, and landmarks.

Intensity-based registration software

Some of the most popular software packages that perform

nonlinear registration are based on image intensity, rather than

on landmarks or features or parametric representations derived

from image intensity: SPM2 (http://www.fil.ion.ucl.ac.uk/spm/

spm2.html), AIR (http://bishopw.loni.ucla.edu/AIR5/index.html),

and AutoReg’s mritotal and ANIMAL (http://www.bic.mni.

mcgill.ca/software). SPM2, a popular software suite for func-

tional brain mapping analysis, includes a nonlinear registration

algorithm that models deformations as a linear combination of (3-

D discrete cosine transform) basis functions; parameters represent

coefficients of the deformations in three orthogonal directions

(Ashburner and Friston, 1999; Friston et al., 1995). The

algorithm simultaneously minimizes the sum of squared differ-

ences between the voxel (volume element) intensities of two

brain images, and the bending energies of the deformation fields

(by estimating an inverse covariance matrix for the parameters).

The nonlinear registration program has demonstrated fully

automated, continuous, and detailed labeling of the entire cortical

volume (Tzourio-Mazoyer et al., 2002). AIR’s align_warp is a

polynomial warping algorithm that also minimizes summed

squared differences between voxel intensities of two brain images

(Woods, 1999; Woods et al., 1998). ANIMAL (Collins et al.,

1995) is essentially a local, smooth, piecewise implementation of

the global linear algorithm from which it was derived (Collins et

al., 1994), where the cross-correlation of intensity values is

maximized between the atlas and brain volumes at increasing

spatial resolutions.

Hybrid approaches

ANIMAL + sulci (Collins and Evans, 1999; Collins et al.,

1998) and ANIMAL + INSECT (Collins and Evans, 1999; Collins

et al., 1999) are hybrid extensions of ANIMAL that incorporate

image-based features to improve registration. ANIMAL + INSECT

incorporates tissue classification; a probabilistic atlas is trans-

formed to the subject space, masking the tissue-classified data to

segment regions of the MRI volume. Another method that has

incorporated tissue-classification is octree spatial normalization

(OSN, Kochunov et al., 2000). OSN nonlinearly registers tissue-

classified anatomical templates (instead of voxel intensities) by fast

cross-correlation in larger octants and centroid feature matching in
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smaller octants; the original gray matter images are then warped

according to the resulting deformation field. Parameter space

warping (PSW) is another hybrid approach that uses local features

to guide spherical harmonic basis functions that warp a complete

parametric representation of the cortical surface (Meier and Fisher,

2002). All of these methods enforce continuous deformation and

therefore make inherent assumptions about preserving topography.

SPM2, AIR, ANIMAL, and most of the other nonlinear registra-

tion methods are based on voxel intensities and thus are sensitive to

image quality and artifacts, and require template masks for cropped

or lesioned regions.

Bayesian-based labeling

A subset of the above methods incorporates Bayesian statistics

that stress reliability or symmetry of the solution to the nonlinear

registration problem (Ashburner et al., 1997, 1999; Gee, 1999; Gee

et al., 1995) and are currently under active research. Freesurfer is

an alternative method that does not presently rely on warping, and

uses an anisotropic nonstationary Markov random field (MRF) to

model the spatial relationships between neighboring labeled

structures (Fischl et al., 2002, 2004). The label of each voxel is

determined using a Bayesian approach that incorporates the prior

probabilities that (1) a given label is assigned to that voxel in a

probabilistic atlas and that (2) a given label has a spatial

relationship with its neighborhood of voxels after linear registra-

tion of a subject volume to an atlas space. Unlike feature-based

approaches such as Mindboggle, due to computational constraints,

spatial relationships are considered only within the neighborhood

of six flanking voxels along the coordinate axes about a given

voxel in voxel-based coordinates (Fischl et al., 2002) or within the

neighborhood along the two principal directions on the surface of a

sphere at each spherically transformed location (Fischl et al.,

2004). The resulting cortical labeling is constrained to a surface

representation of the cortex rather than extending through the brain

volume.

Feature matching

In addition to linear and nonlinear procedures that register

whole volumes, there have been attempts to use feature-based

methods that match or identify sulci based on size (Jaume et al.,

2002) or sulcus substructures based on point distribution models

and/or relational graphs or combinations of features (Chui et al.,

2001). Substructures include parametric surfaces (Le Goualher et

al., 1998), sulcus basins (Lohmann and von Cramon, 2000;

Lohmann and Yves von Cramon, 1998, and manually identified

in Rettman et al., 2002), crest lines (Declerck et al., 1995), hull-

projected skeletons (Caunce and Taylor, 1999), and 3-D sulcus

skeletons (Lohmann, 1998; Mangin et al., 1995; Rivière et al.,

2000). The relational graphs obtained by Rivière’s aggregate of

neural networks are analogous to those of Le Goualher,

Lohmann, Mangin, and Declerck. A hybrid extension of Rivière’s

work adds warping to regularize the sulcus feature matching with

intensity matching and emphasizes point-to-point correspondence

and smoothness in its transformations (Cachier et al., 2001). A

recent addition to this body of work parcellates the cortical

surface by constructing a cortical mesh and filling the mesh with

gyrus labels in three steps (Cachia et al., 2003a). First, the

bottoms of identified pairs of parallel sulci are projected onto the

cortical mesh. Then, a Voronoi diagram of the projected sulci
provides bgyrus seedsQ between the sulci. Finally, a second

Voronoi diagram based on the gyrus seeds defines the boundaries

between competing gyrii.

Techniques of evaluation

Most of the above methods were evaluated by their authors

using only visual inspection and very few of the approaches were

actually used to demonstrate cortical labeling. Some studies used a

small set of landmarks to infer how well different brain volumes

were matched. For example, Salmond et al. (2002) found that

constrained registration in SPM99 (smaller number of nonlinear

basis functions and smaller degree of regularization) resulted in an

optimal colocalization of eight homologous landmarks in different

brains. Woods et al. (1998) demonstrated that AIR’s higher-

dimensional warps decreased the average distance between

corresponding sulcus landmarks in different brains. To evaluate

OSN, Kochunov et al. (2000) calculated the spatial variance of

individual sulcus tracings around their mean tracing for several

sulci. ANIMAL achieved an average result of 87% for basal

ganglia structures according to overlap with manual labels (Collins

et al., 1995, and see bEvaluation of MindboggleQ), but typically
obtains results of 40% to 50% for cortical structures (Collins et al.,

1999). ANIMAL + sulci was evaluated by computing the root-

mean-squared minimum distances between sulcus points in a target

brain and nearest neighbors in 16 sulci in each of 10 transformed

brains (Collins and Evans, 1999). ANIMAL + INSECT was

evaluated by computing the average Dice similarity coefficient

(0.657 F 0.037, Dice, 1945) between automated and manual labels

for the prefrontal cortices of 20 brains (Collins et al., 1999b).

Freesurfer (Fischl et al., 2004) was evaluated by comparing the

surface areas of each automatically and manually labeled region,

and by calculating the overall point-by-point agreement between

their labels (see ddAtlas labels and a probabilistic databaseTT). A
comparison with this method would require representing the cortex

as a 2-D surface. As for the feature-based methods, comparing

results is impossible when features are identified but the cortical

volume is not labeled. To evaluate Mindboggle, we compared its

output with output from linear (12-parameter affine) registration

alone and in combination with the most popular software packages

to nonlinearly register brains: SPM2, AIR, and ANIMAL.

Mindboggle

Our method, Mindboggle, labels brains based on similarities

between corresponding sulcus pieces and is therefore a feature-

based method. However, Mindboggle differs from the above-

mentioned feature-based approaches in the way that it defines and

extracts sulcus substructures, and in that it does not ascribe any

anatomical significance to the substructures but merely uses them

to set up correspondences between two brains for further

processing. Furthermore, as a feature-based method, Mindboggle

compares individual anatomical structures derived from images as

opposed to the image intensities themselves, and is therefore quite

robust to poor image quality, intensity inhomogeneity artifacts, and

missing regions. It also avoids some of the continuity assumptions

of the standard nonlinear registration algorithms by allowing for

secondary and tertiary sulci to exist in one brain but not in another,

and therefore has the potential to more flexibly deal with greater

local morphological variability due to intersubject differences and/

or pathology. Continuity is assumed, however, at the level of
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primary sulci (defined by the atlas), since a matching structure in

the subject brain is sought for each primary sulcus in the atlas,

although even this assumption may be relaxed by constraining

unlikely matches (see below). Mindboggle is also deterministic, it

does not require any random numbers or seed values and gives

identical results for a given input. This combination of qualities

makes Mindboggle a widely adaptable system for automated,

nonlinear labeling of human brain images.
Materials and methods

Mindboggle is a software package written in Matlab (version 6,

release 13, with the Image Processing Toolbox, The Mathworks

Inc., USA) and has been tested on different models of desktop and

laptop PCs and workstations running different distributions of

Linux and Unix. The general system requirements are the basic

requirements of the Matlab environment. The system used to

conduct the following tests consists of a Sun Fire 6800 with a 750-

MHz, 64-bit processor with 32 GB memory running Sun Solaris 8.

In the following subsections, we first describe (1) atlas

selection, (2) MR image acquisition, and (3) image processing.

We then explain how Mindboggle (4) prepares subject sulcus

pieces, (5) matches each atlas piece with a combination of subject

pieces, (6) transforms atlas label boundaries to the matching

subject pieces, and (7) warps atlas labels to their transformed

boundaries and propagates these labels to fill a mask derived from

the subject brain. Mindboggle optionally (8) resets atlas-specific,

feature-derived planar boundaries for frontal and temporal poles as

well as the occipital lobes, if the atlas itself is labeled using these

planar boundaries. We evaluate Mindboggle by (9) comparing its

results with those obtained by one linear and three nonlinear

methods. Fig. 1 portrays Mindboggle’s processing pipeline, and all

subsequent figures follow a single subject through the pipeline.

The final step in the flowchart, labeling activity data, is discussed

in Discussion.

Mindboggle uses a single set of default parameters, described in

the relevant sections below. Since it is impossible to theoretically

determine an optimal parameter set for this feature matching

approach, those parameters that were not determined theoretically
Fig. 1. Mindboggle flowchart.
were determined empirically using different atlases and subjects

than were used in the present study. We systematically searched the

parameter space associated with the matching, warping and label

filling stages (5 and 7 above), and selected values for these

parameters that produced minimum labeling errors according to the

measures described below.

Atlas selection

Any atlas with anatomical labels and corresponding T1-

weighted volume may be used with Mindboggle (atlas reviews:

Mazziotta, 1997; Toga et al., 1998: http://www.loni.ucla.edu/

~thompson/whole_atlas.html). A desirable format for labeling

MRI data should (1) be of high resolution, (2) be acquired in the

same manner as the subject data, (3) include most of the brain, (4)

be representative of the subpopulation under study, and (5) should

have a high spatial correlation between parcellation boundaries and

sulci. The most commonly used atlas, the Talairach Atlas

(Talairach and Tournoux, 1988), fulfills none of the first four

criteria, since (1) the coarse 27 horizontal figures represent (2)

postmortem sections of (3) one cerebral hemisphere of (4) a 60-

year-old woman. Electronic versions of the atlas have corrected for

inconsistencies (Nowinski et al., 1997), but mistakes still remain

(Maldjian et al., in press). We have used several brain atlases with

Mindboggle, including the Harvard Brain Atlas (Kikinis et al.,

1996) and the MNI1 Atlas, Montreal Neurological Institute’s

single-subject atlas (Tzourio-Mazoyer et al., 2002).

To convert an atlas to one that may be used directly by

Mindboggle, the labeled T1 volume is preprocessed in the same

manner as a subject T1 volume (see bImage processing before

applying MindboggleQ), and is converted to (primarily gyrus)

labels and 3-dimensional label boundaries. The label boundaries

are the subset of labeled voxels that have two different labels

within each labeled voxel’s 3 � 3 � 3 neighborhood.

To validate Mindboggle, we compared automated labels with

manual labels assigned to each subject brain. We increased the

probability of label consistency between the atlas and manually

labeled subject brains by having the subject brains manually

labeled by the same labeler using the same parcellation scheme.

We then randomly selected one of the subject brains to further

process and serve as the atlas to perform automated labeling of

these same brains. Ten subject brains were parcellated by Jason

Tourville using a software tool developed by Satrajit Ghosh at the

Department of Cognitive and Neural Systems, Boston University.

The labeling scheme is modified from that implemented in

Cardviews software (Caviness et al., 1996; Tourville and Guenther,

2003).

In addition to the labeling atlas, we have selected for

coregistration the MNI152 Atlas, MNI’s intensity average of 152

T1-weighted volumes in Talairach space (Evans et al., 1992). All

registration and labeling is performed in this space (resolution of

1 � 1 � 1 mm and dimensions of 181 � 217 � 181 voxels). We

also use the MNI1 Atlas for cropping the cerebellum, and made use

of both the MNI1 and Harvard Brain Atlases to initially derive

parameter settings for the algorithms.

Image acquisition

The T1-weighted MRI data were acquired at the MGH/MIT/

HMS Athinoula A. Martinos Center for Biomedical Imaging using

a 3T Siemens scanner and standard head coil (TE: 2.9 ms, TR: 6.6

 http:\\www.loni.ucla.edu\~thompson\whole_atlas.html 
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s, flip angle: 88). The in-plane resolution was approximately 1 � 1

mm, the slice thickness was 1.33 mm, and the dimensions and field

of view were 256 � 256 voxels. The subjects in this study are four

men and six women between the ages of 22 and 29 years old (mean

of 25.3). All are right-handed. Using SPM2 software, the data were

bias-corrected,1 affine-registered to the MNI152 template, and

segmented. The gray-white matter boundaries of the segmentations

appear rather crude, but as described below, the extent of gray

matter plays an insignificant role in the feature matching and

labeling steps.

Image processing before applying Mindboggle

Mindboggle calls on third-party software to perform four

preliminary steps on a subject brain image: (1) crop non-brain

matter, (2) linearly coregister with the MNI152 Atlas, (3) segment

cortical gray matter, and (4) crop subcortical structures, cerebel-

lum, and exposed brain surface. Mindboggle has been used with

different software suites and presently defaults to (1) BET (Smith,

2000), (2) FLIRT (Jenkinson and Smith, 2001), (3) FAST (Zhang

et al., 2001), and (4) avwmaths, all developed by Oxford

University’s FMRIB group (http://www.fmrib.ox.ac.uk/fsl). FLIRT

uses correlation ratios to find optimal 12-parameter affine trans-

formations and registers using trilinear interpolation (linear

interpolation of points within, for example, a cube given values

at the vertices of the cube).

To ensure that only the cortical gray matter on the banks of

sulci, not on the exposed surface of the cortex, contributes to the

construction of 3-D sulcus pieces (see below), the exposed surface

is cropped by erosion (3 voxels deep). The subcortex and

cerebellum are also cropped with a mask constructed from the

MNI1 and MNI152 Atlases. In the present study, T1-weighted

MRI data were already segmented using SPM2 (see bImage

acquisitionQ above), so the third step above (FAST segmentation)

was unnecessary.

Preparation of 3-D sulcus pieces

The simplest representation of an atlas or atlas-labeled subject

volume is a set of boundaries dividing adjacent anatomical regions.

Sulci are prominent structures in MR images and usually serve as

anatomical boundaries. Skeletal surfaces can capture the essential

geometry of sulci and provide a sparse representation of an

intensity volume, lessening the computational burden of comparing

atlas and subject brains (examples of skeletonization procedures

include Malandain and Fernández-Vidal, 1998, and those men-

tioned above in bFeature matchingQ). More importantly, a geo-

metric representation of the cortex such as a skeleton may be easily

fragmented, enabling combinatoric comparisons and matching (see

below). Piecewise matching of component structures, unlike

smooth deformations of cortex, can in principle resolve the

above-mentioned topographical deviations encountered between

brains, though this assertion has not yet been tested.
1 From the SPM2 website: bThe [bias] correction model is non-

parametric, and is based on minimizing a function related to the entropy of

the image intensity histogram. . .the cost function is based on histograms of

the original intensities, but includes a correction so that the solution is not

biased towards a uniform scaling of all zeros.Q
To create this skeletal representation (Fig. 2), Mindboggle

performs three two-dimensional morphological operations to

embedded gray matter in the horizontal slices of a T1 volume.

For the first two operations, Matlab’s bwmorph.m applies a

majority-surround 2-D filter to remove isolated pixels in every

3 � 3 neighborhood, and then applies successive thinning (erosion

that preserves 1-D extent and Euler number) to reduce binarized

slices to one-pixel-width skeletons. For the third operation, each

slice of skeleton is segmented into 2-D sets of 8-connected pixels

(pixels adjacent in the horizontal, vertical, or diagonal direction)

using Matlab’s bwlabel.m. The second (thinning) operation

iteratively replaces non-skeletal with skeletal arrangements of

pixels in every 3 � 3 neighborhood. Non-skeletal arrangements

acted upon by the thinning operation (48 of the 512 possibilities)

are defined by a center pixel with three to five surrounding pixels

adjacent to each other (sharing an edge), or by a center and two

adjacent pixels forming a right angle with up to three adjacent

corner pixels. The thinning operation is repeated until no change

takes place, resulting in a 2-D skeleton that contains any arrange-

ment of pixels except that no four adjacent pixels form a square

and no pixel branches into only one right angle without at least one

pixel diagonal to it. The result of these three morphological

operations is a stack of 2-D cross-sections of all embedded sulci

and the interhemispheric plane. These three steps are performed in

two dimensions in order to facilitate 3-D fragmentation of the

skeleton (see below).

The first division of the brain in 3-D is to partition the skeleton

into left and right hemispheres. A sagittal plane is positioned in the

general orientation of the interhemispheric plane. A type of

unsupervised neural network called a Self-Organizing Map

(SOM, Kohonen, 1997) was modified to warp the plane in one

dimension, along its normal vectors. The target of the warp is the

set of nearest points in a medial slab of the skeleton. The warped

plane acts as a continuous representation of the interhemispheric

plane and divides the skeleton into two hemispheres of sulcus

points. The SOM acts on points of the plane as follows. Each point,

Pi, is pulled at time t toward its nearest point Wi in the target

(nearest in the original space, t = 0) according to the distance

between them and a neighborhood function h. The neighborhood

function consists of a learning rate parameter that determines the

fraction of this distance that Pi will be translated toward Wi at each

iteration (set to 0.1) and a neighborhood centered on Pi whose

points also converge toward Wi according to a function of their

distance from Pi (in this case a Gaussian function of r = 10 mm,

clipped at a radius of 20 mm):

Pi t þ 1ð Þ ¼ Pi tð Þ þ h P; tð ÞjWi � Pi tð Þj
ðSelf -Organizing Map equationÞ

To match a finer set of corresponding structures than hemi-

spheres between brains, we had to redefine the skeleton as a

collection of 3-D bsulcus piecesQ (Fig. 3), performed in three steps.

In the first two independent steps, points are clustered across

horizontal slices from the bottommost slice up and from the

topmost slice down. For the third step, a finer clustering is

achieved by intersecting the resulting clusters from the first two

steps. The first and second steps are conducted as follows. Any set

of 8-connected pixels in the first slice is considered a separate

piece. In subsequent slices, each pixel is grouped with the nearest

piece of the previous slice. The maximum in-plane distance for

grouping a pixel to its nearest piece is set to three pixels, found to

 http:\\www.fmrib.ox.ac.uk\fsl 


Fig. 2. Preparing 3-D sulcus pieces from subject MRI data. Mindboggle input consists of either T1-weighted MRI data or gray matter masks segmented from

the MRI data. Third-party software skull-strips, linearly coregisters, and segments non-white matter from MRI data (see text). Mindboggle then thins the non-

white matter to a skeleton for each slice (1st arrow). The sulcus skeleton is split into left and right hemispheres by a plane that is warped to the inter-

hemispheric plane (2nd arrow). Each slice of the skeleton is segmented into 2-D pieces of contiguous sets of pixels (3rd arrow). Finally, 3-D pieces are

constructed from the 2-D cross-sections (4th arrow), shown here in cross-section and in 3-D in Fig. 3. A single horizontal slice of each brain volume is shown

for clarity with arbitrary colors (frontal lobe toward the top, left hemisphere on the left).
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be roughly half the average width of horizontal cross-sections of

segmented sulcus gray matter in preliminary tests with pilot

subjects. Three pixels would therefore approximate the average in-

plane distance between skeletons constructed from two identical

sulcus cross-sections offset by half of its width. Pixels without a

nearby piece (within three in-plane pixels) are grouped with 8-

connected pixels of the same slice that are similarly ungrouped;

this new group defines a new piece.

The number of pieces should be a compromise allowing for

computational ease yet accurately reflecting the geometric and

label resolution of the problem. To ensure that there are a

reasonable number of discernibly shaped pieces, small sulcus

pieces (less than 50 voxels) are grouped with nearby pieces in

an extended neighborhood (within five voxels); if after this step

there are any small, isolated pieces remaining, they are
Fig. 3. 3-D sulcus pieces. Mindboggle constructs 3-D sulcus pieces from

subject MRI data (Fig. 2), rendered here with surfaces and arbitrary colors

(left view). The pieces do not have to correspond accurately to anatomical

divisions because Mindboggle uses them not to label a brain directly, but to

compute a transformation to deform atlas label boundaries.
eliminated to reduce computational demands on subsequent

steps. Setting the minimum size of a piece to 50 voxels was

empirically found to result in a consistent number of pieces

across ten pilot subjects; this number is a compromise between

two competing concerns: minimizing the number of pieces to

reduce processing time versus maximizing the number of pieces

to generate high resolution label boundaries. Defining a nearby

piece to be within five voxels allows for a distance along a

right angle (in- and out-of-plane) of three and four pixels,

where three defines the maximum separation between points of

the same 2-D piece and four defines the minimum separation

between two different 2-D pieces.

The above three parameters for constructing pieces have not

been evaluated for coregistration spaces of different size or

resolution. However, they should scale according to the expected

average piece dimensions. For example, three in-plane pixels

defining adjacency and five voxels defining nearness would

instead be based on half the expected piece width as above, and

50 voxels defining minimum size could instead be the size of

pieces two standard deviations below the mean size of pieces after

preliminary construction.

The resulting pieces may be of appropriate size and number, but

in order to define compact shapes with high surface-to-volume

ratios, Mindboggle performs two more steps to fragment and then

regroup clusters into their final pieces. First, a k-means algorithm

fragments each sulcus piece into smaller pieces, using as its initial

means a set of 27 points distributed through the sulcus piece’s

bounding box: one in the center, one per corner (8), one at the middle

of each edge (12), and one at the center of each plane (6). A second

algorithm recombines each pair of resulting clusters if the two

clusters share extensive borders. (bExtensiveQ was defined as a

border-to-surface voxel ratio of at least one-tenth, in which a border

voxel neighbors both clusters and a surface voxel has fewer than six

neighbors, where the neighborhood consists of the six adjacent

voxels, one to each side. This ratio is equivalent to the area of a

circle, formed by the intersection of two spheres of equal radius,

divided by their surface area, where the distance between the two

spheres was chosen to be equal to 1.2 times the radius). For example,
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a sphere that happens to have been fragmented by the k-means

algorithm would recombine after applying the second algorithm,

whereas a dumbbell split in the center would remain fragmented.

Using these clustering procedures, the left and right hemispheres of

the 10 subjects automatically divided into the same number of pieces

on average (left hemisphere: l = 165 pieces, r = 13.5; right

hemisphere: l = 165 pieces, r = 12.3).

Matching pieces

After Mindboggle has deconstructed a subject brain image

into 3-D sulcus pieces, it searches for matching pieces in the

atlas (left half of Fig. 4). As any pair of brain images will not

fragment in the same manner, comparisons should be made

between combinations of their pieces. However, matching

combinations of atlas pieces with combinations of subject pieces

would lead to a combinatorial explosion. The solution space can

be reduced significantly by introducing the following constraints

that also allow for some combinatoric matching: (1) each

combination of subject pieces may contain a maximum of three

pieces, (2) the mean location of each piece must be within 20

voxels of the mean of at least one of the other pieces in the

combination (four times the maximum allowable distance

between elements of the same piece, defined above), and (3)

each combination may be compared with only one atlas piece at

a time. The problem of identifying all of the most reasonable

tentative matches for each atlas piece then reduces to one that

may be computed much more rapidly—in a fraction of a second

for the brain images in this study. Selecting the best of these

tentative matches for each atlas piece is still not trivial, as they

may contain subject pieces already matched with other atlas

pieces, while some subject pieces may not find a match. These

deviations from complete correspondence are not necessarily a

disadvantage; sulcus structures may exist in one brain and not in
Fig. 4. Matching 3-D sulcus pieces and transforming atlas label boundaries. Min

minimizing a cost function. The atlas piece assigns its sulcus label to the matching

multiple pieces with a single sulcus label. Each atlas piece is paired with a patch

surfaces). Mindboggle translates each atlas patch to the matching subject piece

coregistered subject brain. Each colored region in the right half of the figure repr

figure are left views of atlas and subject sulcus labels, with a medial view of the ri

view of the left hemisphere at the bottom.
another, and interruptions and branching of sulcus structures

require discontinuous labeling.

To select the best set of matches for each atlas piece,

Mindboggle orders the tentative matches by a sum of four

weighted differences serving as a cost function. Three of the four

costs are differences between quantities computed from subject

and atlas skeleton pieces: the number of points (N), number of

subvolumes (V), and mean position (P). The fourth cost is the

degree of non-overlap (O) of subvolumes occupied by the pieces.

Each of these costs is normalized by the mean value across all

tentative matches. Each term of the cost function is therefore

dimensionless, but the cost function has not been evaluated for

coregistration spaces of different size or resolution. The relative

degree of subsampling of the coregistration space (by breaking up

the space into subvolumes) should account for such differences.

Mindboggle uses a subvolume size of five times that of a voxel

(5 mm3 boxes = 5 voxel3). The number of subvolumes occupied

by a piece is computed by tallying the number of boxes

containing at least one sulcus piece point. The subvolume

dimensions are set large enough to defray computational cost

and to increase the probability of overlap between tentative

matches. If each subvolume was instead equal to one voxel, then

two tentative matches with exactly the same distribution of points

but offset from one another by a single voxel could result in no

overlap. As with the numbers of points and mean positions, the

numbers of subvolumes are precomputed for each piece before

combinations are formed. Non-overlap of two pieces, P1 and P2,

is equal to the fraction of subvolumes of P1 that do not overlap

P2 added to the fraction of subvolumes of P2 that do not overlap

P1. We avoided using non-intersection divided by the union to

distinguish between cases such as the following: (a) P1 = 4

subvolumes, P2 = 5, with intersection = 3, and case (b) P1 = 4,

P2 = 2, with intersection = 2. Our non-overlap measure would

result in 1/4 + 2/5 = 13/20 for case (a) and 2/4 + 0/2 = 1/2 for
dboggle matches each atlas piece with a combination of subject pieces by

subject pieces. Each colored region in the left half of the figure represents

of the atlas label boundaries (that correspond for the most part with sulcus

s, resulting in piece-wise linearly deformed atlas label boundaries in the

esents multiple patches with a single sulcus label. All of the images in this

ght hemisphere at the top, an overhead view in the middle row, and a lateral
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case (b), whereas non-intersection over union would lead to 1/2

for both cases. The default weights wN, wV, wP, and wO were

empirically determined by examining resulting matches between

the MNI1 and Harvard Brain Atlases, and have been set to 1, 1,

10, and 10, respectively. The ratio between the first two and last

two weights is rather robust, giving comparable results for ratios

of 1:2 to less than 1:20, but the cost rises dramatically if any term

is omitted. Matching is also robust to inaccurate or inconsistent

piece construction because slight variations in the size, volume,

position, and shape of the pieces have an insignificant impact on

the cost function (after each unweighted cost term is normalized).

EM ¼ wNN þ wVV þ wPP þ wOO ðmatching cost functionÞ

To search for a low cost set of matches, Mindboggle constructs

a matrix with each column containing the tentative matches

(subject piece combinations) for each atlas piece, sorted by cost.

The least cost combinations (top row) are selected as winning

matches for all the atlas pieces. For each subsequent row, unused

subject pieces are appended to the above matches. For duplicate

pieces within a row, the one with the least cost is chosen. The

matching procedure is terminated when all pieces have been
Fig. 5. Warping atlas labels to their transformed boundaries. Atlas gyrus, lobe, an

smoothly line the atlas label boundaries that have been broken up into patches and

3-D to fill a mask of the subject’s gray matter. Shown from left to right is the atlas

target subject brain for evaluation. Red tags on the slices (oriented with the fronta

volumes (left views) denote the largest discrepancies between Mindboggle-assign

frontal pole, (b) the boundary between middle and inferior frontal gyrii, (c) the ante

and (e) the boundary between middle and inferior temporal gyrii.
appended or when the desired number of rows has been searched.

A threshold may be set when computing the cost function to reduce

the chance of unlikely matches when, for example, a subject brain

is missing a primary sulcus (no threshold was set in this study).

Transforming and propagating labels

Even after Mindboggle has matched subject pieces to each atlas

piece, labeling the subject space between these pieces is not trivial.

The pieces constitute a miniscule fraction of the brain volume and

have a limited extent that is not sufficient to divide the volume.

Even worse is the fact that the skeletal pieces do not necessarily

follow the original, manually defined atlas label boundaries (see

bAtlas selectionQ). For these reasons, Mindboggle does not rely on

the atlas pieces to label the brain directly, but instead relies on the

original, manually defined atlas label boundaries (corresponding

roughly to sulcus surfaces) nearest to these pieces.

There are three steps to labeling the subject brain after the

above matching has been performed: (1) transforming atlas label

boundaries to the subject brain, (2) warping atlas labels to these

new boundaries, and (3) propagating labels to fill the remaining

gaps. First, the atlas label boundary surfaces are transformed to the

subject brain by fragmenting them into patches and translating
d pole labels are warped in 3-D (with a modified Self-Organizing Map) to

transformed to the subject sulcus pieces. These labels are then propagated in

, the atlas after label warping and propagation, and the manual labels of the

l lobe toward the top, left hemisphere on the left) and the surface rendered

ed and manually assigned labels for this subject: (a) the plane defining the

rior boundary of the precentral gyrus, (d) the boundary of the temporal lobe,
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them (right half of Fig. 4). Each patch is the set of atlas label

boundary points nearest to an atlas piece. Each patch is translated

by the difference between the mean positions of the matching

subject and atlas pieces. Because the mean position of a piece is

robust to variations of its shape, Mindboggle’s labeling algorithm

is robust to inaccurate or inconsistent skeletal piece construction.

Second, the original atlas labels (enclosed by the atlas label

boundaries and corresponding primarily to gyrii) are warped to the

translated boundaries to apply a smooth coat of labels to these

translated boundaries (Fig. 5). For each translated boundary point

(voxel), the atlas label nearest to the point’s original position

translates the entire distance to the point. The label’s neighbors

(within a radius of 5 mm to reduce the number of computations)

translate different fractions of this distance toward the point, with the

fraction defined by the (Gaussian, r = 1 mm) function of their

original distances from the label. All relevant quantities other than

distances between matching pieces are precomputed to increase

computational speed.

Third, after warping, labels are cropped by a mask of the

subject’s gray matter. Each unlabeled voxel in the mask is assigned

the majority label in a new neighborhood about the voxel (5 � 5 �
5 voxels, a neighborhood size empirically observed to give the best

results in preliminary tests with 10 pilot brains). Ties are broken by

selecting the label with the lowest index rather than by random

selection to increase the algorithm’s speed. The last step is repeated

several times to label all remaining unlabeled voxels.2

Resetting planar boundaries

Many atlas-labeling schemes set planar boundaries between

some adjacent regions. Though these planes do not follow true

anatomical boundaries, they can be useful in separating regions

where there is no clear or consistent boundary or no well-defined

topographical landmarks, such as the juncture of the occipital,

temporal, and parietal lobes.

The manually assigned label boundaries in our 10 subject brains

incorporate planar boundaries in addition to label boundaries that

follow the appropriate sulci. These planar boundaries constrain the

frontal and temporal poles and occipital lobes. The plane marking

the posterior boundary of the temporal pole is set where a clearly

visible white matter tract connects the frontal and temporal lobes.

The plane marking the posterior boundary of the lateral surface of

the frontal pole is set at the most anterior point of the anterior

horizontal ramus of the Sylvian Fissure, and for the medial surface

is set at the anterior tip of the cingulate gyrus. The plane marking

the anterior boundary of the lateral surface of the occipital cortex is

set at the bopercularizationQ of the intraparietal sulcus (where it

becomes highly curved and often splits into two sulci), and for the

medial surface is set at the most anterior point of the parietal-

occipital fissure (Tourville and Guenther, 2003).

Mindboggle may optionally refine the label boundaries of the

temporal poles and the lateral portions of the frontal poles and

occipital lobes (at least 15 mm (voxels) from the interhemispheric

plane) to better correspond with the above definitions. This

postlabeling step is important because Mindboggle relies on

structural similarities to match and label, not on contrived planar
2 A similar procedure to this iterative propagation of majority labels

through successive neighborhoods was discussed in the context of Markov

random field models by Besag (1986).
boundaries; this step is optional depending on whether planar

boundaries are included in the label definitions. Mindboggle will

automatically set the temporal pole plane at the most anterior pair of

adjacent voxels labeled as superior temporal gyrus and frontal lobe.

It will set the lateral frontal pole plane at the most anterior voxel of

the transformed sulcus boundary between the frontal-orbital and

temporal regions. It will set the lateral occipital lobe plane at the

most anterior voxel with an occipital lobe label; this plane also

marks the anterior boundary for the lower portion of the medial

occipital lobe, below the most inferior voxel with abutting occipital

lobe and inferior parietal lobe labels. WhenMindboggle resets these

planar boundaries, some voxels become unlabeled. These are

relabeled by the same label propagation step as above (assign each

unlabeled voxel the majority label in its neighborhood).

Evaluation of Mindboggle

We evaluated the labels that Mindboggle assigned to each

subject by defining and applying five measures that quantify the

degree of similarity and dissimilarity between manually and

automatically assigned labels: overlap, mask overlap, and filled

mask label agreements, and type I and type II errors. To put these

numbers in some context, we used these measures to also evaluate

linear registration and linear registration followed by the three

other nonlinear methods: SPM2, AIR, and ANIMAL.

We selected label agreements as evaluation measures because

they are intuitive and may be applied to whole brain volumes,

slices, or regions of interest. The above methods were used to

automatically register the entire set of voxels with automatically

assigned atlas labels, A, to the entire set of voxels with manually

assigned labels, M, for each subject. Comparisons were then made

between the two sets of voxels for each label of index i

corresponding to a particular region of interest. The total number

of voxels (volume) with a given label assigned either automatically

or manually is jAi [ MIj, corresponding to the union of label sets

Ai and Mi. The number of voxels that have been assigned this label

both automatically and manually is jAi \Mij, corresponding to the

intersection of label sets Ai and Mi. The overlap between label sets

Ai and Mi is defined as the volume of intersection divided by the

volume of union (Gee et al., 1993; Jaccard, 1912), and may be

extended to multiple labeled regions by summing over a set of

labels of index i:

Overlap ¼

P

i

jAi \Mij
P

i

jAi [Mij

The mask overlap penalizes for discrepancies in overlap but not in

size. Mask overlap quantifies a comparison between label sets Ai

and Mi only within the set Mi, here the labels in a subject’s gray

matter mask. The measure thus normalizes by jMij, the number of

voxels manually assigned that label (Collins et al., 1995), and

again may be extended to multiple labeled regions by summing

over a set of labels of index i:

Mask overlap ¼

P

i

jAi \Mij
P

i

jMij

For the third label agreement measure, filled mask, we filled a

subject’s gray matter mask with automated labels, AF, using
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Mindboggle’s label propagation algorithm. This consists of

assigning each unlabeled voxel within the mask the majority label

in its (5 � 5 � 5) neighborhood in multiple steps.

Filled mask ¼

P

i

jAF
i \Mij

P

i

jMij

To refine our evaluation, we also compute type I and type II

statistical errors. Both of these errors assume that the manual labels

are the correct labels. A type I error for a given region refers to the

condition where incorrect labels are assigned to voxels within the

region (e.g., voxels in the superior frontal gyrus are labeled as

middle frontal gyrus). It is computed as the volume of a manually

labeled region, jMIj that is outside the corresponding automatically

labeled region, jAIj, divided by the volume of the manually labeled

region. Summed over a set of labels or regions of index i:

Type I error ¼

P

i

jMi=Aij
P

i

jMij

where Mi/Ai is the set (theoretic complement) of elements in Mi

but not in Ai. A type II error refers to the condition where a

region’s label is assigned to other regions (e.g., voxels outside of

the superior frontal gyrus are labeled as superior frontal gyrus). It is

computed as the volume of an automatically labeled region, jAij,
that is outside the corresponding manually labeled region, jMij,
divided by the volume of the automatically labeled region.

Summed over a set of labels or regions of index i:

Type II error ¼

P

i

jAi=Mij
P

i

jAij

Both the type I and type II errors can range from zero to one, so

that perfect overlap between automatically and manually labeled

voxels for a given label results in zero for that label; if the labeled

voxels were completely disjoint, then the errors for that region

would equal one.

Cortical gray matter in each of the brains was manually labeled

in the same manner as the atlas (see bAtlas selectionQ and

bResetting planar boundariesQ above). Of the 96 labels (Caviness

et al., 1996), 74 were selected and merged to give 36 labels (18 per

hemisphere): superior, middle, and inferior frontal and temporal

gyrii, frontal and temporal poles, pre- and postcentral gyrii,

superior and inferior parietal lobules, occipital lobe, fusiform,

lingual/parahippocampal, and orbital (frontal) gyrii, insula, and

cingulate gyrus. This gross parcellation of the cortex was chosen to

include only distinct anatomical boundaries that are relatively

consistent across brains. It would be difficult to over-emphasize

this latter point, as brain researchers are familiar with different

atlases with different anatomy and inconsistent labeling schemes.

Subcortical structures, though less variable in morphology across

brains than cortical structures, were not found to consistently

segment well in the preprocessing stage, and were not included in

the labeling. Mindboggle, SPM2, AIR, and ANIMAL were used to

label the same subject volumes with the same 36 labels to compare

with the manual labels.

Before performing the five labeling methods under comparison,

the subject images were skull-stripped, then linearly registered to

MNI152 space using a 12-parameter affine transformation (see
bImage processing before applying MindboggleQ). The linear

transform was also used to register the manually labeled voxels

to MNI152 space.

In the linear registration condition, we calculated the agree-

ment between the coregistered atlas and manual labels. We used

the nonlinear registration methods SPM2, AIR, and ANIMAL to

compute nonlinear transforms from the atlas T1-weighted image

to each subject T1 image and applied the transforms to the atlas

labels with nearest-neighbor interpolation (so as not to change the

label values). For SPM2’s bNormalisation,Q each subject image

served as the template to which the atlas image was registered; a

template bounding box was used with a voxel size of 1 � 1 � 1

mm. ANIMAL and AIR were used to transform each subject

image to the atlas image and then an inverse of this transform

was used to register atlas labels to the subject labels for

comparison. The inverse transform was used because this is the

way that ANIMAL was originally evaluated (Collins et al., 1995)

and because AIR was found not to register as well when

computing the forward transform. ANIMAL was invoked by

AutoReg’s bmritotal,Q a multi-scale method that fits a subject

image to an atlas at finer resolutions, by successively blurring the

two less and less (16, 8, 4, and 2 mm FWHM Gaussian kernels).

AIR (v5.25) registered each subject to the atlas linearly with

balignlinearQ then nonlinearly with a 5th degree polynomial

transform computed by balign_warp.Q
In early tests, nonlinear registration of an atlas brain image

to a subject brain image that did not span the same extent of

the brain resulted in very poor registration and labeling by

SPM2, AIR, and ANIMAL (but not Mindboggle). We therefore

used whole brain acquisitions for these tests. But even with

whole brain acquisitions, none of the methods result in perfect

overlap of gray matter between the atlas and subject brains after

warping; for our nine subjects, the mean overlap for gray matter

equaled 36% (SPM2), 36% (AIR), and 40% (ANIMAL).

Mindboggle warps labels to coat transformed boundaries, not

to deform gray matter shapes; after warping, Mindboggle labels

all voxels in the subject’s gray matter mask and none outside

the mask, so the resulting overlap is 100%. But because of

Mindboggle’s application of the gray matter mask, it is

unreasonable to directly compare its results with those of the

other methods under comparison. In order to compare the other

four methods with Mindboggle, we first used the subject gray

matter masks to mask the labeled volumes (mask overlap in

Tables 1a and 1b and Fig. 6), then applied the same label

propagation step that Mindboggle uses to the labels assigned by

each of the other methods (filled mask in Tables 1a and 1b

and Fig. 6). The percent correct of intersecting voxels for

AIR, SPM, and ANIMAL were within one standard deviation

of the values obtained by Crivello (Table 3 in Crivello et

al., 2002).

Finally, to test the hypothesis that Mindboggle, a feature-based

method, should be more robust to incomplete data than intensity-

based methods, we used each of the methods (using default

parameters) to register the labeled T1-weighted atlas to an

artificially lesioned version of itself (or a lesioned version of its

segmented image in the case of Mindboggle). Registered labels

were then compared with lesioned labels. The self-labeling

approach was taken to control for morphological variability and

to directly compare methods without applying a label-filling step.

Artificial lesions were used for careful control over their placement

and extent. Also, a real lesion will distort a brain’s shape. By



Table 1a

Comparison between registration methods: percent label agreements

Linear SPM2 AIR ANIMAL Mindboggle

Overlap 27.66% (1.75) 27.43% (1.78) 27.97% (2.49) 31.63% (3.73)

Mask overlap 43.50% (1.44) 42.85% (1.50) 45.29% (1.58) 48.00% (3.39)

Filled mask 74.29% (1.73) 74.51% (1.86) 75.56% (1.63) 76.41% (1.83) 76.88% (1.33)

This table compares different registration methods. One of the 10 subjects was randomly selected to serve as an atlas, and its T1-weighted MR volume was

registered to the other 9 subjects’ T1 images using the five different methods: Linear (12-parameter affine) registration alone and in combination with nonlinear

warping by SPM2, AIR (5th degree polynomial transform), and ANIMAL (with multi-scale resolution steps of 16, 8, 4, and 2 mm FWHM Gaussian kernels),

and with Mindboggle. The atlas labels were then transformed to each subject’s manual labels in MNI152 space. Percentages were calculated from the overlap

of (1 � 1 � 1 mm) labeled voxels in MNI152 space. Every entry is in percentage of voxels averaged across the nine subjects, with standard deviations in

parentheses.

There was a mean of 582,715 manually labeled voxels for the nine subjects and a mean of 654,007 automatically labeled voxels for the nine subjects and

the five registration methods. The average intersection between manually and automatically assigned labels, equal to the gray matter overlap, was 37% for

Linear, 36% for SPM2, 36% for AIR, 40% for ANIMAL, and 100% for Mindboggle. Overlap is the number of intersecting voxels that have identical labels

divided by the total number of labeled voxels. There is a substantial improvement in percent label agreement for these methods according to the less

conservative mask overlap metric, where overlap is calculated only within the subject’s gray matter mask. Overlap and mask overlap results are the final output

of Linear, SPM2, AIR, and ANIMAL. There is greater than a two-fold improvement in these methods when applying the filled mask condition, where subject

gray matter masks are then filled with automated labels using Mindboggle’s label propagation algorithm (where every unlabeled gray matter voxel is assigned

the majority label in the voxel’s neighborhood). The data from the filled mask condition will therefore be used as the basis of comparison between the methods.

Overlap and mask overlap results are absent for Mindboggle because these intermediate results are not particularly relevant. Mindboggle’s warping algorithm

was designed to simply coat label boundaries with labels, not to register gray matter to gray matter.

Table 1b

Type I and Type II errors and run times

Linear SPM2 AIR ANIMAL Mindboggle

I II I II I II I II I II

Overlap 0.56 (0.01) 0.42 (0.03) 0.57 (0.02) 0.41 (0.03) 0.55 (0.01) 0.43 (0.04) 0.52 (0.03) 0.39 (0.04)

Mask overlap 0.56 (0.01) 0.12 (0.01) 0.57 (0.02) 0.12 (0.01) 0.55 (0.01) 0.12 (0.01) 0.52 (0.03) 0.12 (0.01)

Filled mask 0.26 (0.02) 0.20 (0.01) 0.25 (0.02) 0.20 (0.01) 0.25 (0.02) 0.20 (0.01) 0.23 (0.02) 0.19 (0.01) 0.23 (0.01) 0.19 (0.01)

Time 0 3 min 13 min 2 h 45 min*

This table compares the average type I and type II errors under each of the conditions of Table 1a (with standard deviations in parentheses). The Time row

gives the approximate run time for each method, after linear registration.

* Mindboggle takes about 45 min after gray matter segmentation.
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excising a portion of normal brain data to serve as an artificial

lesion, we could control for distortion and ensure that the original

manual labels would give the correct result. One of the pair of

lesions was centered on Broca’s region (left inferior frontal gyrus,
Fig. 6. Comparison between registration methods. A one-way ANOVA was perf

obtained by each of the methods (linear, SPM2, AIR, ANIMAL, Mindboggle).

significant difference criterion to determine which pairs of means are significan

confidence interval around the mean, based on the Studentized range distribution. If

same test was conducted again for the mask overlap and filled mask overlap label

propagation procedure was applied to each of the other methods to fill the subj

significant different result is in red. Mindboggle obtained a significantly higher me

Mindboggle’s label propagation procedure, only Mindboggle obtained a significan

0.05). See Tables 2a, 2b, and 2c for corresponding ANOVA tables. (For interpretat

the web version of this article.)
Talairach coordinates [35, �15, 55]) and the other on the right

motor strip (precentral gyrus, Talairach coordinates [�55, 15, 20]).

The shape of the artificial lesion was a cube and was increased

from 1 to 5 cm3 (10 to 50 voxel3) (Fig. 7).
ormed to test if the means are the same for the overlap label agreements

A multiple comparison test was then performed using Tukey’s honestly

tly different. The graphs display the mean for each method with a 95%

intervals are disjoint, their means are considered significantly different. The

agreements. The filled mask overlap was measured after Mindboggle’s label

ect gray matter masks with labels. Mindboggle’s result is in blue and any

an union label agreement than any other method ( P b 0.05). After applying

tly higher mean label agreement than did linear registration or SPM2 ( P b

ion of the references to colour in this figure legend, the reader is referred to
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Results

Tables 1a and 1b and Fig. 6 present a comparison between the

registration methods used to transform the atlas labels to the nine

subjects in MNI152 space. Table 1a contains label agreements

between automated and manual labels averaged across the nine

subjects. The mask overlap results for ANIMAL do not differ from

an independent evaluation of the algorithm (Collins et al., 1999).

Table 1b compares the type I and type II errors under the same

conditions. The Time row gives the approximate run time for each

method after performing linear registration (and after tissue

segmentation for Mindboggle). SPM2 was the fastest and ANIMAL

the slowest of the methods (3 min and over 2 h, respectively).

To evaluate the results obtained by each of themeasures (overlap,

mask overlap, filled mask overlap, type I error, type II error) applied

to each of themethods (linear, SPM2,AIR, ANIMAL,Mindboggle),

we used a one-way ANOVA followed by a multiple comparison test.

The one-way ANOVA was performed for each measure to test the

null hypothesis that the means of the results are equal for the

different methods. The multiple comparison test was performed
Fig. 7. Registering to artificially lesioned brain image data. Each of the methods

artificially lesioned version of itself (or a lesioned version of its segmented image

region (left inferior frontal gyrus, Talairach coordinates [35, �15, 55]), pictured

gyrus, Talairach coordinates [�55, 15, 20]), pictured in the second row of images.

cm3 (left to right in the figure). The accompanying graph shows the results of com

Without lesions, the union label agreements between the atlas and the atlas registe

and 93.50% (Mindboggle). AIR perfectly aligns the atlas with itself, but in the l

results as linear registration. Mindboggle’s labeling performance hardly degrades

susceptible to discrepancies in the target volume. Moreover, Mindboggle’s labelin

tests were conducted with lesioned subject brains rather than lesioned atlas brain
using Tukey’s honestly significant difference criterion to determine

which pairs of means are significantly different. Two means are

considered significantly different if their intervals are disjoint. The

95% confidence intervals are based on the Studentized range

distribution.

Mindboggle’s filled mask results obtained a significantly higher

mean label agreement and significantly lowermean type I and type II

errors than the overlap or masked overlap results obtained by any

other method (P b 0.05). After applying Mindboggle’s label

propagation procedure to all the other methods (the filled mask

condition), their results dramatically improved, but only Mind-

boggle obtained a significantly higher mean filled mask label

agreement and significantly lower mean type I and type II errors than

did linear registration or SPM2 (P b 0.05). See Tables 2a–2c for the

corresponding ANOVA table.

In another experiment, the atlas was registered to itself with

each of the registration/labeling methods to determine their

breflexive accuracyQ (the degree to which the most trivial condition

is consistently satisfied). Table 3 presents the label agreements

between the atlas and the atlas registered to itself. The overlap and
(using default parameters) was used to register the labeled T1 atlas to an

in the case of Mindboggle). One of the two lesions was centered on Broca’s

in the top row of images, and the other on the right motor strip (precentral

The shape of the artificial lesion was a cube and was increased from 1 to 5

paring registered labels with lesioned labels for each of the five methods.

red to itself are equal to 71.57% (SPM2), 100% (AIR), 98.72% (ANIMAL),

esioning tests, AIR warps labels within lesioned areas, producing identical

as the lesion size increases, whereas the other methods appear to be more

g performance did not degrade with increasing lesion size when the same

s.



Table 3

Comparison between registration methods: atlas labeling itself

Linear SPM2 AIR ANIMAL Mindboggle

Overlap 100% 71.57% 100% 98.72% 83.76%*

Mask overlap 100% 81.53% 100% 99.20% 84.79%*

Filled mask 100% 96.08% 100% 99.93% 94.21%

Table 3 presents label agreements as in Tables 1a and 1b, except, in this

case, for comparisons between the atlas registered to itself.
4 See captions to Tables 1a and 1b for explanation.
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mask overlap label agreements for SPM2 were low, and are a result

of slight differences along the edges of the gray mask before and

after registration (the edges of the gray matter mask make up 46%

of the gray matter itself, or 350,607 of 759,616 voxels). AIR

produced the best results of the nonlinear methods, suggesting that

it would be more reliable in situations where subject brains are very

similar to the atlas. Mindboggle’s 6% deviation from perfect

reflexive accuracy occurs primarily at the label warping stage and

to a lesser extent at the label propagation stage and is less than the

number of voxels making up the boundary surfaces between the

different labeled regions (8%, or 53,494 of 668,175 labeled voxels

within the two hemispheres, not including the interhemispheric

plane). It is important to note that the reflexive accuracy test does

not measure accuracy and robustness across brains. An algorithm

that always performs perfectly when comparing test data with itself

may fail when comparing across different data sets. For example,

although AIR could theoretically achieve 100% accuracy based on

these results, in practice, this is never achieved when one brain is

registered to another using this algorithm; therefore, the reflexive

accuracy test is not a good indicator of how well one brain will

register to another.

Fig. 7 presents the effect of artificial lesions on each labeling

method’s self-labeling performance. Mindboggle’s labeling per-

formance hardly degrades even as the size of each lesion exceeds

50 mm, whereas the performance of the other methods declines as

the lesion size increases. The difference is primarily due to the fact

that Mindboggle fills a subject’s gray matter mask with labels, and

the gray matter does not extend into the lesions, whereas the other

nonlinear methods warp atlas labels within lesions or to differently

labeled regions outside of the lesions. AIR, for example, continues

to have perfect atlas-to-atlas label registration, but only in non-
able 2a

NOVA table for overlap results

ources of variability Sum of

squares

Degrees

of freedom

Mean

squares

F statistic P value

olumns 16836 4 4208.99 748.66 b10�12

rror 224.9 40 5.62

otal 17060.9 44
T

A

S

C

E

T

Table 2b

ANOVA table for mask overlap results

Sources of variability Sum of

squares

Degrees

of freedom

Mean

squares

F statistic P value

Columns 7500.78 4 1875.19 466 b10�12

Error 160.96 40 4.02

Total 7661.74 44

This table corresponds to the three (left to right) graphs in Fig. 6.

Table 2c

ANOVA table for filled mask results

Sources of variability Sum of

squares

Degrees

of freedom

Mean

squares

F statistic P value

Columns 46.378 4 11.5944 4.07 0.0073

Error 113.921 40 2.848

Total 160.299 44

This table corresponds to the three (left to right) graphs in Fig. 6.
lesioned areas. When the same tests were conducted with lesioned

subject brains rather than the lesioned atlas brain, Mindboggle’s

labeling performance still did not degrade with increasing lesion

size.
Discussion

There are numerous methods in the scientific literature that

outline different ways to make one brain conform to the shape of

another or to identify corresponding points between two brains. Few

have been applied in a completely automated way to label brain

anatomy (gyrii or sulci) and of these fewer still have been evaluated

beyond visual inspection, where image correspondence is mistaken

for anatomic correspondence (Rogelj et al., 2002). There exist

methods that are readily available for assessing and comparing the

accuracy of nonlinear registration methods (Dinov and Sumners,

2001; Grachev et al., 1999; Robbins et al., 2003), but the authors are

aware of only a few studies that have compared different nonlinear

registration algorithms (Crivello et al., 2002; Dinov et al., 2002; Gee

et al., 1997; Hellier et al., 2001, 2002, 2003). In one such study

(Hellier et al., 2002), SPM99 matched cortical sulci of different

brains better than did ANIMAL, the opposite result of our

comparison between SPM2 and ANIMAL, but this was with

ANIMAL’s finest resolution set to 4 mm (versus 2 mm in this

study). As in this example, representing different algorithms fairly,

running them with optimal parameter settings, and achieving a

consensus on a set of satisfactory metrics have proven to be very

difficult hurdles in cross-laboratory comparisons (Paul Thompson,

personal communication). The evaluation measures we used in our

study are voxel-based overlap label agreements (fractions of

manually and automatically labeled voxels that share the same

label) coupled with type I and type II statistical error measures.

These measures are appropriate for comparing labeled volumes and

may be supplemented with other measures. For example, point- or

curve-based distance metrics could provide measures more sensitive

to discrepancies in position between structural homologues or label

boundaries.

In addition to the problem of comparing different automated

methods is the problem of comparing automated and manual

labeling. Because automated methods have higher consistency but

are expected to have lower accuracy than manual labeling, it would

be reasonable to compare the original atlas labels with labels

assigned to the atlas by automated methods and by manual labeling

by several humans. In this way, we could determine how Mind-

boggle’s error rate, for example, compares to within and between

labeler inconsistency. Although we cannot make this direct

comparison without multiple sets of manual labels, we can re-

calculate our label agreement results to compare with the interlabeler

agreement values measured by Caviness et al. (1996) for a label set
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very similar to ours. They found the percent accord between two

expert human labelers to be 80.23% (r = 11.50%3) averaged across

all 96 labels in four brains, where percent accord is the percent of

voxels assigned the same label divided by the mean number of

voxels assigned that label. When recalculated for the 74 labeled

regions that coincide with the 36 labeled regions used in our study,

their average percent accord was 80.00% (r = 7.91%). This

number would be somewhat higher if recalculated for the fewer

and larger regions used in our study, since Caviness et al. found a

weak correlation between percent accord and region size. The

percent accord between Mindboggle and manual labels averaged

across the 36 labels in nine brains was 73.06% (r = 4.94%).

Because of the difference in accuracy and reliability estimates,

the authors recommend that automated labeling should precede a

round of manual corrections, especially in pathological cases.

Having said this, Mindboggle performed better than any of the

other registration/labeling methods. After improving the results of

the other methods by applying Mindboggle’s label propagation

algorithm to fill subject gray matter masks with automated labels,

Mindboggle was the only nonlinear method tested that gave

significantly better results than linear registration or SPM2. Mind-

boggle is based on a completely different strategy than these other

methods and does not make the assumptions they do about

preserving topography. The resulting flexibility is advantageous in

conditions where brain morphology varies considerably, and may be

well suited to labeling pathological brains. Mindboggle is under

further development to improve each stage of the algorithm. In this

section, we will address areas of development in the same sequence

as the subsections of Materials and methods.

Atlas labels and a probabilistic database

We have tested several different individual atlases with Mind-

boggle and are now incorporating a probabilistic atlas database. In

this scenario,Mindboggle labels a subject brain withmultiple atlases

and each subject voxel is assigned a set of labels, one from each atlas.

The number of atlas brains that assigned each label to the voxel

provides a confidence measure for the voxel’s label. Labeling with

multiple atlases ensures that labels assigned to a subject brain are not

entirely dependent on the idiosyncrasies of a single atlas brain’s

morphology. When Mindboggle uses multiple atlases, the label

agreement is significantly higher than when using a single atlas with

Mindboggle (to appear in a separate publication) or with any of the

other methods compared in this study. The label agreement also

compares favorably with results obtained by Freesurfer’s surface-

based cortical parcellation program (Fischl et al., 2004). However,

Mindboggle’s labels would have to be represented in 2-D for direct

comparison with Freesurfer’s results. Freesurfer has obtained a

median label agreement of 78% for 36 subjects labeled with 50

labels from the Caviness et al. parcellation scheme (Caviness et al.,

1996).

With regard to the atlas space itself, there is no reason to restrict

the representation of the atlas or subject to the native, 3-D space.

Mindboggle could be modified to perform the preparation, match-

ing, and labeling stages in another (for example flat or spherical)

coordinate frame if, for instance, distance along the cortical surface

were a preferred distance metric to Euclidean distance through the

native volumes.
3 The mean of the standard deviations (Table 4, Caviness et al., 1996) is

actually 8.08%.
Alternative image acquisitions

Brain image acquisition does not have to be limited to T1-

weighted MR data. Multispectral approaches could help to

delineate different and finer structural boundaries in the atlas

and subject brains. Mindboggle-assigned labels could be trans-

ferred to any of the multiple acquisitions, to label particular

imaged or segmented structures that are spatially distinct from

the label boundaries, in the same way that Mindboggle labels

activity data (see bLabeling activity dataQ below). For that

matter, Mindboggle could be adapted to label other atlas-

referenced data, from the histological to the physiological. If it

were found that some structural, physiological, or functional

subdivision of cortex held a close spatial relationship with

another subdivision of cortex, for example, some morphological

features such as certain sulci were to have a close correspond-

ence to certain Brodmann’s areas, receptor density maps, or

activity data, then one set of labels could be used to infer

another set of labels. There are bound to be more appropriate

subdivisions to infer functional propensity than those provided

by a macrostructural atlas, such as microstructural or physio-

logical subdivisions, if not a database of functional mappings.

Improvements in image processing

Mindboggle is a modular program running a sequence of

algorithms, beginning with third party software for preprocessing

of acquired data. Different preprocessing algorithms could be used

(Boesen et al., 2003; Schaper et al., 2003; Yoon et al., 2003); we

selected FMRIB’s software package because of its ease of

installation, ease of use, and its speed. The present algorithms

give results that appear robust (this would need to be confirmed by

an intra- and intersite evaluation (Styner et al., 2002): we scanned

one subject in two different scanners months apart, resulting in

different segmentations but a difference in label agreement of less

than 1%. The nature of the study or the subject may raise concerns

about particular preprocessing steps. For example, segmentation

results would be of particular concern if conducting morphometric

studies on Mindboggle-labeled brains, since Mindboggle labels a

gray matter mask, whose construction is sensitive to the skull-

stripping and segmentation algorithms used. A second example

would be if one were to label clinical cases where lesions can affect

the labeling; for these cases, more sophisticated brain extraction

and registration algorithms would probably need to be imple-

mented (Brett et al., 2001; Itti et al., 1997; Periaswamy and Farid,

2003). Likewise, in any subsequent steps after preprocessing,

Mindboggle could adopt more accurate and efficient algorithms.

For example, the partitioning of a skeletonized brain into left and

right hemispheres could benefit from a new algorithm for

automating extraction of the midsagittal plane (Hu and Nowinski,

2003).

Another area of improvement is run time reduction. A single

subject’s run from the preprocessing through the final labeling

stage presently takes about 45 min after preprocessing (linear

registration and gray matter segmentation) on a Sun Fire 6800 with

a 750-MHz, 64-bit processor running Sun Solaris 8: 5 min to

construct a sulcus skeleton, 7 min to divide the skeleton with an

interhemispheric plane, 13 min to construct and tally data on sulcus

pieces, 10 min to transform matching pieces from the atlas to the

subject brain, and the remaining 10 min to warp and propagate

labels through the gray matter mask. The run time would reduce



A. Klein, J. Hirsch / NeuroImage 24 (2005) 261–280 275
significantly with faster preprocessing algorithms and optimized

code rewritten in a lower-level language such as C as opposed to

Matlab.

Improvements in matching

What is important for matching and labeling structures is

that there is a tight correspondence between the structures used

in matching and the parcellation boundaries used in labeling.

Presently, neither sulcus skeletons nor atlas parcellation boun-

daries necessarily lie along the midlines of sulci due to noise

and thresholding artifacts, and labeling conventions, respectively.

Mindboggle matches and moves atlas to subject sulcus pieces,

carrying along patches of atlas label boundaries to divide the

subject brain. If the spatial correlation between sulci and

parcellation boundaries were low, then Mindboggle would not

be expected to adequately label the subject brain.

The matching stage may in the future exploit multiple

constraints, such as statistical attributes of sulci (Le Goualher et

al., 1999, 2000; Mangin et al., 2003; Royackkers et al., 1999;

Wang and Staib, 1998), anatomical or functional connectivity

information provided by diffusion-weighted imaging (Poupon et

al., 2001), or developmental morphogenesis considerations

(Cachia et al., 2003b; Jouandet and Deck, 1993). Previous

matches could also refine the search for further matching; for

example, identification of the central sulcus could constrain

which sulcus is most likely to be the precentral sulcus (Corouge

and Barillot, 2002; Vaillant and Davatzikos, 1999) and even the

identification of distal structures could constrain further sulcus

identification (Naidich et al., 2001). Proper matching of

corresponding structures would not only aid in labeling a brain,

but could refine the spatial localization of activity data (Corouge

et al., 2003; Crivello et al., 2002; Flandin et al., 2002; Gee et al.,

1997; Hellier et al., 2001; Kochunov et al., 2003). Conversely, it

may also be fruitful to use functional mapping as a means of

constraining the set of possible matches. For example, if a subject

were to undergo a set of tasks that elicit well-characterized

activity data, the locations of the data could be used to identify

and match features to constrain Mindboggle’s matching program.

Functional mapping could also help to define anatomically ill-

defined boundaries. For example, retinotopic mapping could be

used to define the extent of the occipital lobe (Dougherty et al.,

2003). And although Mindboggle was designed without concern

for topographical preservation, it would be possible to enforce

topographical preservation in a modified matching cost function

that were take into account global and local neighborhood

relationships between features.

Matching sulcus pieces is a significant combinatoric problem,

and Mindboggle uses a simple, non-exhaustive, non-probabilistic,

non-evolutionary strategy. The primary advantages of employing

these characteristics are faster computation and elimination of

intermediate results. An alternative would be to perform proba-

bilistic matching to search the solution space more broadly.

Genetic algorithms and simulated annealing are two such

approaches; parallel recombinative simulated annealing (PRSA),

a combination of the two, allows for parallelism and convergence

to a global solution (Mahfoud and Goldberg, 1995). We attempted

an implementation of PRSA for the matching stage and it failed to

find adequate solutions when more than 10 of a reduced set of 25

sulcus pieces were used. This failure could be due to our energy

function, but iterative observations of the tentative matches seemed
to indicate that there were simply too many possible permutations

for mutation and permutation crossovers to evolve toward a

solution in reasonable time.

Improvements in label transformation and propagation

After an atlas piece is matched to a combination of sulcus pieces,

its corresponding patch of label boundary is simply translated to the

sulcus pieces by the difference between their mean and the mean of

the atlas piece. We applied an iterative closest-point algorithm (Besl

and McKay, 1992) to rotate as well translate each atlas piece to

matching subject pieces and applied the transform to the atlas patch,

but this did not improve results. Perhaps applying a nonlinear

transformation to these boundaries might improve results. Alter-

natively, a multi-scale approach performed during the matching

stage might lead to better registration, first by matching pieces, then

by matching the smaller fragments that make up the two matching

pieces.

After transforming the label boundaries in the subject space, the

labels themselves are warped to coat these new boundaries.

Mindboggle precomputes a neighborhood for each boundary point

and distances within each neighborhood to the point for computa-

tional speed and perfect repeatability of results. However, there is

an order effect on the spatial distribution of labeled voxels because

voxels warped to one boundary point could overwrite voxels

previously warped to a neighboring boundary point. And because

convergence is performed in a single step for each neighborhood

independently, the resulting warp is not continuous.

Like the Self-Organizing Map (SOM) used earlier to divide the

skeleton into hemispheres, this simple warping algorithm preserves

neighborhood relationships. This would suggest that topography is

preserved, but warping is performed after matching. Although

difference in mean position is penalized by the matching cost

function, it is possible for the arrangement of the matching pieces

to be different in the atlas and subject brains such that they have a

different topography. Any labels that are warped to these

rearranged boundaries may not preserve topography either.

Our present label propagation strategy to fill in these gaps is

crude, simply assigning an unlabeled voxel with the majority label

in its cubic neighborhood. A slightly more sophisticated strategy,

incrementally increasing the radius of the neighborhood, and

taking the majority label of a minimum number of enclosed points,

did not improve results. These label propagation strategies and

preceding linear boundary transformations fail to properly label

about convoluted boundaries. For example, a region that protrudes

more in the subject than in the atlas could be overwritten by the

label of the surrounding region if it happens to lie between a

boundary point and its transformed location. Parametric surface

patches might aid registration at this local level, particularly for

convoluted boundaries.

Evaluation

In order to improve and validate Mindboggle and other

techniques, we need to use reasonable and consistent evaluation

measures. We chose overlap, mask overlap, and filled mask label

agreements as flexible and intuitive evaluation measures that may be

applied to volumes, slices, or regions of interest. Variants of these

measures could differentiate between variable and less variable

structures, weight regions by size or emphasize border offsets

between two brains. Presently, the voxel-based evaluation measures
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used in this paper do not take into account misregistration within a

labeled region (parcellation unit). The parcellation units may be

subdivided fine enough to reduce this problem. However, as the

parcellation units become smaller, our confidence in the corre-

spondence between their registered boundaries degrades. The

problem is particularly acute when dealing with clinical conditions.

Real lesions and brain pathologies can affect the spatial positions of

structural and functional regions. In cases where lesions may disrupt

label boundaries, more sophisticated evaluation techniques (Fiez et

al., 2000) should be employed than those used in this paper to

evaluate registration of artificially lesioned brains. Evaluation of

morphometric studies may also benefit from the use of different

measures that are sensitive to the difference between registered

shapes rather than volumes (voxel counts within a parcellation unit)

(Gerig et al., 2001).

As long as some reasonable measure is adopted then there is the

possibility of comparing different methods (for concerns regarding

evaluation see Crum et al., 2003; Rogelj et al., 2002). This

assumes, however, that the different methods are performing the

same functions. Methods exist that do not perform certain

preprocessing stages, nonlinearly register and label only discon-

tinuous structures, and/or involve manual intervention at different

stages. A good strategy to evaluate different methods would

therefore be to break up the labeling problem into modular

components (preprocessing, linear registration, nonlinear registra-

tion, label transfer, and label propagation) and evaluate every

combination of the different components taken from different

established methods. Such a comparison could be extremely

helpful when deciding which method to use in order to label

particular regions of interest. In this study, we selected only

prominent methods that are amenable to whole brain nonlinear

registration after a linear registration step. Unfortunately, because

Mindboggle relies on a postprocessing step to fill a subject’s gray

matter mask with labels, its label warping algorithm is not suited to

a modular break in processing after warping. Perhaps, employing

another warping strategy, such as one of the other methods under

comparison, would enable greater modularity of the Mindboggle

processing pipeline. Within the nonlinear registration module, one

could test different subcomponents such as regularization techni-

ques, additional constraints, and different similarity or distance

metrics (Fischer and Modersitzki, 2003).

A more fundamental concern regarding evaluation is the validity

of comparing automated labels with manual labels. As stated in

Introduction, manual labeling is inconsistent and can never provide

an inarguable bgold standard.Q To ameliorate this situation some-

what, we may turn to probabilistic rather than individual manual

labels as a reference with which to compare automated labels (see

Atlas labels and a probabilistic database above). Not only could

probabilistic labels represent the variability in a population of

brains, but could even take into account interlabeler variability as

well.

Labeling activity data

The label set tested in this study is not complete. Presently,

cerebellums are crudely removed, and subcortical structures and

ventricles are not included. We are currently testing other ways to

extract cerebellums, since their extraction should improve registra-

tion (Rehm et al., 2003) as well as labeling. Subcortical structures

are better conserved across brains than cortical structures, so

Mindboggle could employ an automated version of the original
Talairach approach (Lancaster et al., 2000) or other algorithms

dedicated to labeling ventricles and subcortical structures (for

example: Duta and Sonka, 1998; Fischl et al., 2002; Iosifescu et al.,

1997; Poupon et al., 1998; Schnack et al., 2001).

Anatomical labels assigned by Mindboggle may be transferred

to any functional activity data. Because Mindboggle is a

postanalysis procedure it labels functional data independently of

the manner in which the activity data are acquired, analyzed, or

transformed, in the same way that labels that Mindboggle assigns

to a gray matter mask are independent of the gray matter

segmentation method used. As an example, Mindboggle uses

third-party registration software to label fMRI BOLD activity data

in the following manner. T2-weighted data are registered to T1-

weighted data (voxel intensities may be compared using mutual

information in FLIRT, for example). Anatomical labels in MNI152

coregistered space are inverse-transformed to T1-weighted data in

the original subject space and then to the subject space where the

activity data resides. Mindboggle’s label propagation algorithm

could then be applied if there are activity voxels that do not overlap

the inverse-transformed labels. This approach results in one label

assigned to each active voxel and at least one label assigned to each

cluster of active voxels. If desired, the labels within a given cluster

could then be reassigned as prescribed by a postprocessing

algorithm.

In the future, we intend to evaluate Mindboggle using

functional mapping in restricted but well understood areas to

validate automated labels in those areas. As a preliminary test, we

used Mindboggle to label activity data acquired from five subjects

undertaking five standard tasks. The standard tasks, acquisition

protocol, regions expected to be activated during each task, and the

analysis procedure were those outlined by Hirsch et al. (2000) as a

standard battery for neurosurgical planning. We determined that

Mindboggle’s labels of the fMRI BOLD data included regions that

we expect to be active during these tasks.
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