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n attention, cognitive control, decision-making, and other areas where response
time (RT) is a critical variable, the temporal variability associated with the decision is often assumed to be
inconsequential to the hemodynamic response (HDR) in rapid event-related designs. On this basis, the
majority of published studies model brain activity lasting less than 4 s with brief impulses representing the
onset of neural or cognitive events, which are then convolved with the hemodynamic impulse response
function (HRF). However, electrophysiological studies have shown that decision-related neuronal activity is
not instantaneous, but in fact, often lasts until the motor response. It is therefore possible that small
differences in neural processing durations, similar to human RTs, will produce noticeable changes in the HDR,
and therefore in the results of regression analyses. In this study we compare the effectiveness of traditional
models that assume no temporal variance with a model that explicitly accounts for the duration of very brief
epochs of neural activity. Using both simulations and fMRI data, we show that brief differences in duration
are detectable, making it possible to dissociate the effects of stimulus intensity from stimulus duration, and
that optimizing the model for the type of activity being detected improves the statistical power, consistency,
and interpretability of results.

© 2008 Elsevier Inc. All rights reserved.
Introduction

Over the past two decades, the development of functional
magnetic resonance imaging (fMRI) technology has generated near
exponential growth in neuroimaging research and its clinical
applications (Bandettini, 2007). The most commonly used method
for analyzing the blood oxygenation level-dependent (BOLD) changes
in fMRI is based on the general linear model (GLM). A typical
experiment consists of generating a hypothetical cognitive or neural
model of brain activity and using multiple linear regression to search
for voxels correlated with the predicted response. In classic block
designs, the duration of each regressor in the regression model
matches the duration of the stimulus block. As blocks shorten to 4 s or
less, the current convention is to switch to using ‘impulse functions’ of
arbitrarily short duration, rather than simply continue shortening
blocks to match the length of the stimulus. While this may produce
accurate results when the cognitive/neural events are of constant
duration (20% of event-related studies; Fig. 1B), the majority (80%) of
event-related studies involves choice-related neural processes that
can vary in duration with the subject's RT. In 95% of event-related
logical Institute-B41, New York,
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studies containing a decision process (Fig. 1E), the duration of the
decision period is assumed to be constant and is typically modeled by
the convolution of a constant height, finite impulse function (i.e. a
Kronecker delta function) positioned at event onset with a canonical
hemodynamic response function (Friston, 2003, Friston et al., 1994;
Henson, 2003; Josephs et al., 1997).

Although this method can often detect task-related fMRI activity, it
makes the implicit assumption that the underlying neural or cognitive
process is a brief, essentially zero duration, event (i.e. an impulse). This
simplification is generally thought to have little or no impact on the
results. In fact, due to the low-pass filtering properties of the BOLD
response (Zarahn et al., 1997), it has been argued that the shape of the
physiological hemodynamic response (HDR) to brief stimuli (b 4 s) is
equal to the theoretical hemodynamic impulse response function
(HRF), making the constant impulse model a good approximation to
the actual BOLD response (Henson, 2003). However, it has been shown
that stimulus durations as small as 34 ms (Glover, 1999; Rosen et al.,
1998; Savoy et al., 1995) and onset asynchronies as low as 50 ms
(Bellgowan et al., 2003; Henson et al., 2002; Kim et al., 1997; Menon
et al., 1998; Miezin et al., 2000; Richter et al., 2000) can elicit
detectable BOLD responses, suggesting that small differences in the
onset or duration of modeled events may be important.

If the assumption of equivalence between impulse functions and
short (100 ms–4 s) blocks (or boxcars) does not hold, then it should be
possible to dissociate the effects of stimulus intensity from stimulus
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Fig. 1. Survey statistics. We surveyed 170 published fMRI studies to characterize how the GLM is used to analyze imaging data. (A) Block and event-related designs were equally
common. (B) Most event-related studies made inferences about a time-varying decision process. (C) Although response times were recorded in 82% of event-related studies with a
decision component, only 9% actually used this information to construct a regression model for detecting brain activity. (D) Most studies assumed that there were no significant
differences in HRF shape across subjects. (E) In event-related fMRI studies that made inferences about variable duration decision processes, a majority (95%) assumed that the shape
of HDRs did not vary across trials or trial types, and 84% assumed that both shape and intensity did not vary across trials. (F) All of the major analysis platforms were represented and
no obvious relationship between platform type and model type was found.
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duration in event-related designs. Moreover, any discriminable
differences between these models would suggest that the shape of
the BOLD response should be optimized for the type of activity being
detected. For example, impulse functions might best model neural
activity at stimulus onset, whereas brief epochs might best capture
activity that is sustained throughout stimulus processing. Potential
differences between impulse- and short epoch-based models may be
magnified by the fact that response times (RTs) in many studies vary
across trials. Such variations have been shown in animal research to be
related to the variations in the duration of decision-related neuronal
firing (Janssen and Shadlen, 2005; Maimon and Assad, 2006; Ratcliff
et al., 2007; Schall, 2003; Shadlen and Newsome, 2001; Snyder et al.,
2006), and such variability in response time is the basis for a variety of
decision-making models (Ratcliff, 2005). In addition, several fMRI
studies have demonstrated that the HDR to a decision process is likely
to vary with the time it takes to elicit the subject's response (Connolly
et al., 2005; Formisano et al., 2002; Kruggel et al., 2000; Menon et al.,
1998). Importantly, temporal variability is rarely an explicit experi-
mental manipulation, but nevertheless exists implicitly as a distribu-
tion of response times. RTs for simple, suprathreshold detection tasks
(simple RTs) typically range from 200 to 500 ms, whereas choice
responses between multiple options (choice RTs) start at around 400
ms and can range up to tens of seconds depending on speed-accuracy
tradeoffs, task complexity, arousal, age, clinical status, etc (Verhaeghen
et al., 2006, 2003). Thus, decision-related behavioral responses to
many types of brief stimuli—such as those elicited by attention,
memory, cognitive control, language, anddecision-making processes—
are likely to elicit neural activity that (a) persists overmuch of the time
between stimulus presentation and response, and (b) varies in
duration from trial to trial (Fig. 2A).



Fig. 2. GLMmodels used in fMRI analysis. (A) A hypothetical event-related fMRI experiment inwhich the subject responded to the presentation of a stimulus. Assuming a linear time-
invariant (LTI) system, the constant duration stimulus produces sensory neuronal responses and sensory BOLD responses that are also constant in duration. However,
electrophysiological evidence (Janssen and Shadlen, 2005; Maimon and Assad, 2006; Ratcliff et al., 2007; Schall, 2003; Shadlen and Newsome, 2001; Snyder et al., 2006) shows that
the same constant duration stimulus will typically produce variable duration decision-related neural responses, characterized by a subject's RT distribution. An LTI system predicts
that the decision-related BOLD response will vary in both shape and intensity from trial to trial. (B) We tested the efficacy of four regression models against a hypothetical decision-
related cognitive/neural process that varied in duration on each trial. The constant impulse model consists of an impulse function positioned at the onset of each event. The constant
epoch model consists of a 2 s epoch positioned on the TR nearest the onset of the neural event. The variable impulse model is a two-regressor model that uses a constant impulse
regressor and a modulator regressor whose height is proportional to the demeaned durations of the process. All the models were convolved with a canonical double gamma
hemodynamic response function.
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It has been proposed that modeling temporal variability in the data
increases statistical power and captures an important source of
information about the relationship between brain activity and psycho-
physical performance (Buchel et al., 1998; Friston, 2003; Henson, 2003;
Josephs and Henson, 1999). Models that incorporate information about
trial-to-trial variation in RT (or other psychophysiological parameters)
into the GLM are often called ‘parametric modulation’ models. In the
parametric (or variable impulse) approach, a participant's mean-
centered RTs are used to modulate the amplitude of an impulse
function. The modulated impulse function is then convolved with the
HRF and added as an additional regressor in the GLM. Brain regions for
which the amplitude of the primary, unmodulated regressor is
significantly non-zero are interpreted as task-related. Conversely, brain
regions forwhich the amplitudeof themodulated regressor is significant
are interpreted as being sensitive to trial-to-trial variations in RT.
An alternative method is the variable epoch approach, which
involves modeling each trial with a boxcar epoch function whose
duration is equal to the RT of the trial. A single regressor is then
constructed from these boxcars to use in the GLM. This approach
makes the critical assumption that the cognitive and neural basis of
decision-related activity is accurately represented by the diffusion (or
race) model of decision-making (Ratcliff, 2005; Ratcliff et al., 2007).
The diffusion model is supported by electrophysiological studies in
humans (Philiastides et al., 2006) and non-human primates (Janssen
and Shadlen, 2005; Maimon and Assad, 2006; Ratcliff et al., 2007;
Schall, 2003; Shadlen and Newsome, 2001; Snyder et al., 2006) in
which neuronal activity (or firing rate) is sustained or even increases
up to the time of the behavioral response. Thus, compared to the
constant impulse approach, the variable epoch model attempts to
more faithfully represent the physiological processes related to
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decision-making inmany brain regions. In our previous work, we used
this model to locate RT-sensitive brain regions in a decision-making
task and confirmed model accuracy using model-free (GLM-free)
analysis methods (Grinband et al., 2006).

In the current study, the variable epoch model was compared
against three other models: a constant impulse model (the most
common model, used in 70% of event-related studies in our survey;
Fig. 1E), the variable impulse model that includes a mean-centered
parametric modulator (11% of event-related studies), and a constant
epoch model (a variation of the constant impulse approach in which
the impulses are binned within each 2 s TR; 14% of event-related
studies). This paper uses simulations and fMRI data to explore the
differences in the predictions made by these models and demon-
strates that, even for brief events, they are not equivalent. Our data
suggest that when detecting time-varying signals, such as those
generated by a behavioral response, the variable epoch model is
physiologically plausible, and has higher power and reliability for
detecting brain activation.

Materials and methods

Analysis of published methods

To determine how often GLM analyses incorporated RT into
decision-related regressors, we surveyed all fMRI studies from Jan 1,
2007 to May 30, 2007 published in the following journals: Human
Brain Mapping, Nature, Nature Neuroscience, Neuroimage, Neuron,
and Science. A total of 170 articles were assessed. Only articles
reporting results of original fMRI research were included. A summary
of these studies is presented in Fig. 1. We characterized the image
analysis methods used in each study along six dimensions: use of
block vs. event-related designs, inferences about temporal processing,
measurement and modeling of RT, impulse- vs. epoch-based model-
ing, the use of the canonical HRF, and the software package used.

For block vs. event-related designs (Fig. 1A), studies that contained
both a block and an event-related component were labeled as “event-
related.” For constant vs. variable duration designs (Fig. 1B), we
identified studies that did not modulate durations. These included
studies where the stimulus duration was constant and no response
required, studies where the subject was required to perform a task for
a constant duration, or studies where decisions were made but no
inferences about decision-related activity was made in the conclu-
sions of the paper. The variable duration designs included studies that
made inferences about decision-related activity or studies that
explicitly manipulated stimulus duration.

For measurement and modeling of RT (Fig. 1C), in cases where the
use of RT was not mentioned, it was assumed that RT was neither
collected nor included in the regression model. The percent of studies
in which RT was measured/modeled, was calculated by taking the
number of studies in which the RT was measured/modeled and
dividing this value by the number of studies in which a response was
required and conclusions weremade about the response-related brain
activity. To determine whether the length of RT affected the likelihood
of incorporating RT information into themodel, we recorded themean
RT of the condition with the longest RT. For the use of canonical HRF
functions (Fig. 1D), it was assumed that the canonical HRF was used
unless otherwise specified. For the impulse- vs. epoch-based model-
ing (Fig. 1E), the variable impulse models were defined as those
models in which the modulator was a regressor of interest and was
used to detect brain activity. Thus, impulse models that only included
modulated “confound” regressors (such as those for head motion,
respiration, or cardiac-related artifacts) were labeled as constant
impulse models. In instances where the nature of the model was
unclear (n = 8), the corresponding authors of the papers were
contacted. For the software package used (Fig. 1F), in cases where
multiple software packages were used to process data, only the
package used to perform the statistical analysis was included in the
frequency calculations.

Simulations

To test the efficacy of the four regression models to detect time-
varying brain activity, we simulated a cognitive process that varied in
duration across trials and tested model performance by measuring
power and false positive rate (FPR). Simulations were performed
assuming a linear, time-invariant (LTI) system (Boynton et al., 1996).
While nonlinearities are known to exist (Birn et al., 2001; Huettel and
McCarthy, 2000; Miller et al., 2001; Vazquez and Noll, 1998; Wager et
al., 2005), the LTI system was adequate for exploring the differences
between linear models commonly applied to fMRI data. The
incorporation of non-linear effects is a further potential refinement
of regression models that is outside the scope of the current paper.

The power simulation consisted of four steps: (1) a simulated
neuronal time series was created consisting of a series of boxcars with
randomly generated durations; (2) this neural model was convolved
with a canonical HRF to create the simulated BOLD time series; (3) AR
(1) noise was added to the time series; (4) linear regression was
performed between the simulated data and each of the four regression
models. This process was repeated 10000 times to compute the
percent of true positives detected by each model. The false positive
simulation consisted only of steps (3) and (4) to compute the percent
of false positives detected by each model.

Creation of simulated cognitive/neural events
The duration and inter-trial variability of the cognitive process to

be detected is an important variable that may impact the choice of
model. Therefore, we created simulated RTs based on RT distributions
from our previously published empirical study of a two-alternative,
forced-choice categorization task (Grinband et al., 2006). In the task,
10 subjects categorized line segments as “long” or “short.” We fit a
gamma function to the RT distributions of each of 10 subjects (Fig.
S1A) and averaged the gamma parameters to generate a mean gamma
distribution (α = 1.7, β = 0.4, minimum value = 0.5; Fig. S1B) with RT
mean = 0.84 s and s.d. = 0.64 s. Simulated neural process durations
were randomly drawn from the resulting gamma distribution. Thus,
the simulated neural events consisted of a series of boxcars whose
durations are distributed similarly to observed RTs in a simple
perceptual decision-making task.

Variable inter-event intervals were selected from a uniform distribu-
tionwith aminimumof 4 s andamaximumof 7 s, values commonlyused
in fMRI experiments. The total duration of each simulated run was
5.5min. To simulate the autocorrelation present in real fMRI time series,
we added AR(1) noise to each time series with phi = 0.3.

Linear models tested
The fourmodels used to detect this neural process are illustrated in

Fig. 2B. The variable epoch model was created using the same
variable-length boxcars and, consequently, must necessarily fit better
than the other models. However, the question of interest is not which
model fits better, but whether there are any appreciable differences
between the models in their ability to detect brain activity. Our null
hypothesis states that: For brief (b 4 s) stimulus durations, there are no
significant differences between models that assume a constant shape
of the HDR (i.e. ignore differences in duration of neural processes) and
those that explicitly account for the duration differences between
trials. For the variable impulse and constant impulse models, the
model's representation of the neural process was generated by placing
a 50 ms epoch at the onset of the process. The constant epoch model
assumes that the temporal resolution of the neural process and the
BOLD response is equal to the TR and, thus, consists of short epochs
equal to the inter-scan interval (TR = 2 s). It was constructed by
positioning the 2 s epoch on the TR interval closest to the onset of the
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neural process and convolving with the HRF. This is in contrast to the
constant impulse model, which assumes that the temporal resolution
of the BOLD response is equal to the TR but the resolution of the neural
process is 50 ms. The constant regressors (impulse and epoch) had
amplitudes equal to 1. The modulator regressor was created by mean-
centering the neural durations, normalizing the range of durations to
± 0.5, and setting the amplitude of each impulse equal to the
corresponding normalized duration.

Performance metrics
The performancemetrics of interestwere true positive rate (power)

and false positive rate (FPR). We evaluated power and FPR at different
effect sizes using the Pearson correlation coefficient between the
model and the data. To compute power, 10,000 simulated data time
series of signal + AR(1) noise were generated for each effect size and
the fraction of true positives was calculated for each model type. The
signal component of each time series consisted of a random sample of
gamma distributed RTs and uniformly distributed inter-trial intervals.
To compute FPR, we generated 10,000 AR(1) noise time series and the
fraction of positive results was calculated for each model type.

To compare the relative contribution of mismodeling shape vs.
mismodeling amplitude, we computed the effect of shape differences
in the variable amplitude case by measuring the amount of variance
explained by the impulsemodel when each trial was fit independently
of all other trials. In this case, the best amplitude fit is found using an
incorrect shape for each trial (i.e. the canonical impulse response). The
degree of error for each trial is determined by the duration of the
epoch — longer durations have greater deviation from the canonical
response and therefore a larger error. The mean error is determined as
a weighted mean of the RT distribution, Γ(α = 1.7, β = 0.4, min value =
0.5, mean = 0.84 s, s.d. = 0.64 s). Although, shape and amplitude are
normally coupled, this procedure allows us to estimate the effect of
mismodeling amplitude independently from the effect of mismodel-
ing the shape of the HDR.

Visual stimulation experiments

The goal of this study was to determine how model selection
affects the ability to detect time-varying BOLD responses. We needed
a task that couldmodulate the duration of a neural process in a precise
and reproducible way. However, although an actual decision-making
task would introduce temporal variability into the BOLD signal, it
would also generate unknown sources of variability related to the
cognitive aspects of the task. These unknown cognitive effects would
be impossible to model or dissociate from the temporal variability.
Thus, to isolate the effect of the temporal variance from other sources,
we conducted two flashing checkerboard experiments. Because the
flashing checkerboard stimulus primarily activates visual cortex, an
area with known response characteristics, it gave us precise and
reproducible control over the duration of a neural process. Moreover,
the resulting visual activation is known to be sustained throughout
visual stimulation, though it is often strongest at the onset of a
stimulus (Logothetis et al., 2001), in the same way as decision-related
neuronal activity (Janssen and Shadlen, 2005; Maimon and Assad,
2006; Ratcliff et al., 2007; Schall, 2003; Shadlen and Newsome, 2001;
Snyder et al., 2006). We were then able to use the time-varying,
visually evoked responses as a proxy for time-varying, decision-
related responses. Thus, using passive visual stimuli instead of a
decision-making task allowed us both to (1) isolate the effects of
temporal variability in the BOLD response from the confounding
effects of decision-related brain activity, and to (2) determinewhether
the simulations and the actual fMRI results lead to similar conclusions.

Experiment 1 — Dissociating signal intensity from duration
To determine whether differences in HDR shape due to stimulus

intensity and stimulus duration are detectable and dissociable at the
level of an individual, one subject viewed flashing checkerboards
(7.5 Hz) of variable contrast intensity and duration. The stimuli either
varied in contrast (5%,10%, 20%, and 40%)whilemaintaining a constant
duration (0.25 s) or in duration (0.25 s, 0.75 s,1.3 s, 3.5 s) with a constant
contrast intensity (5%). All eight experimental conditions were
randomly intermixed. Each trial type was presented twice per run.
During the inter-trial interval, a fixation point was presented against a
gray background. The subject was scanned for 6 runs of 6min 48 s each.

Experiment 2 — Sensitivity and consistency of GLM analysis
Eight subjects viewed flashing checkerboards of constant contrast

intensity (20%) but variable duration to test the effects of model
selection on sensitivity, consistency, and false positive rate across
individuals. The duration of each checkerboard stimulus was
randomly drawn from the same mean gamma distribution (Fig. S1B)
used in the simulations, which is typical of human choice RT
variability. The inter-trial interval was randomly jittered using a
uniform distribution with a minimum of 4 s and a maximum of 7 s.
During rest, subjects viewed a fixation point against a gray back-
ground. Each subject was scanned for 5 runs of 5 min 30 s each.

Image acquisition
Imaging experiments were conducted using a 1.5T GE TwinSpeed

Scanner using a standard GE birdcage head coil. Structural scans were
performed using the 3D SPGR sequence (124 slices; 256 × 256; FOV =
200 mm). Functional scans for Experiment 1 were performed using
EPI-BOLD (TE = 39; TR = 1.0 s; 13 slices; 64 × 64; FOV = 200 mm; voxel
size = 3 mm × 3 mm × 4.5 mm). Functional scans for Experiment 2
were performed using EPI-BOLD (TE = 60; TR = 2.0 s; 29 slices; 64 × 64;
FOV = 200 mm; voxel size = 3 mm × 3 mm × 4.5 mm). All image
analysis was done using the FMRIB Software Library (FSL; http://www.
fmrib.ox.ac.uk/fsl/) and Matlab (Mathworks, Natick, MA; http://www.
mathworks.com). The data were motion corrected (FSL-MCFLIRT),
high-pass filtered (at 0.02 Hz), and spatially smoothed (full width at
half maximum = 5 mm).

Image analysis
Standard statistical parametric mapping techniques (FSL-FEAT)

were performed prior to registration to MNI152 space (linear
template). Multiple linear regression was used to identify voxels
that correlated with specific sensory events (i.e. flashing checker-
boards). A primary statistical threshold for activation was set at p =
0.01. Since our goal was to evaluate the absolute number of voxels
detected by the different models and because all comparisons were
made between different models for the same data set, no correction
for multiple comparisons was made. Inter-subject group analyses
were performed in standard MNI152 space by applying the FSL-FLIRT
registration transformation matrices to the parameter estimates. For
each run, the transformation matrices were created by registering via
mutual information (1) the midpoint volume to the first volume using
6 degrees of freedom, (2) the first volume to the SPGR structural image
using 6 degrees of freedom, and (3) the SPGR to the MNI152 template
using 12 degrees of freedom. These three matrices were concatenated
and applied to each statistical image. Ventricular masks were created
using FSL-FAST by first segmenting each high-resolution brain into
three tissue types: gray matter, white matter, and CSF. Then the CSF
partial volume maps were transformed into the subject's functional
space of each individual run and thresholded at 0.95 to ensure that no
more than 5% of the volume of each voxel in the mask contained gray
or white matter.

Consistency measurements
The quality of each model can be evaluated by its ability to

consistently detect the same pattern of activated voxels for a given
stimulus. We used Cronbach's alpha (Cronbach, 1951), a measure of
inter-subject consistency, to calculate the mean correlation between

http://www.fmrib.ox.ac.uk/fsl/
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the spatial activation patterns of the occipital cortex across the five
runs. Alpha was calculated for each subject as

α ¼ Nr
N − 1ð Þr þ 1

ð1Þ

where N is the number of runs (N = 5) and r ̄ is the average of all
pairwise Pearson correlation coefficients between the Z-statistic maps
(across voxels). To test for significant differences between models the
alphas were normalized using Fisher's Z-transform:

Zα ¼ 0:5 log
1þ α
1 − α

� �
: ð2Þ

A paired Student's t-test to the Zα scores was used to compare the
variable epoch model against each of the other models.

Variability of HRF estimates
The constant impulsemodel is often used to estimate the theoretical

hemodynamic impulse response. We compared the quality of the
impulse estimate with that of the variable epoch model by measuring
the variance in the HRF estimate across runs. The HRF estimate was
computedusing FLOBS (Woolrich et al., 2004), a three-function basis set
that restricts the parameter estimates of each basis function to generate
physiologically plausible results. The two models were convolved with
each of the FLOBS basis functions and an F-test on the three convolved
functions was performed; for each significant voxel within the occipital
cortex, the parameter estimates for the basis functions were used to
reconstruct the fitted HRF shape, i.e. HRF = PE1 ⁎ f1 + PE2 ⁎ f2 + PE3 ⁎ f3,
where PE is a parameter estimate and f is a FLOBS basis function. The
HRF estimates were then averaged across all significant voxels in the
occipital cortex. Region of interest masks of the occipital cortex were
manually generated for each subject using the calcarine and parieto-
occipital sulci as landmarks. To determinewhether the variances of the
two HRF estimates were different from each other, we used Levene's
Test for Equality of Variance (Levene, 1960):

W ¼ ∑
N − kð Þ∑

i
ni zi − zð Þ2

k − 1ð Þ∑
i
∑
j
zij − zj
� �2 ð3Þ

where N is the total number of observations, ni is the set of
observations within group i, and k is the number of groups, zij ¼
jxij−xij is the absolute deviation fromwithin groupmeans, zi ¼ ∑j zij=ni

is the average absolute deviation from the group mean, and
z ¼ ∑i ∑j zij=N. Here, N = 16, and k = 2.

Results

Survey

Of 170 fMRI studies, 48% were blocked and 44% were event-
related; the remaining 8% were not easily classifiable (Fig. 1A).
Stimulus or response duration was important in 80% of event-related
designs (Fig. 1B). The remaining 20% involved tasks that maintained
constant stimulus/response durations (for example, primary sensory
or primary motor-related studies) or did not make inferences about
decision-related brain activity. In event-related studies in which
decision-making was important, RT wasmeasured 82% of the time but
modeled only 9% of the time (Fig. 1C). Furthermore, only 16% of the
studies (Fig. 1E) actually included RTs, in some form, in their
regression model; that is, 84% of event-related studies with a decision
component made the assumption that the time necessary to process a
stimulus or to generate a response was constant for all trials and trial
types. Similarly, only 4% of event-related studies (Fig. 1D) estimated
individual HRFs for each subject; 96% assumed no differences in HRF
shape existed between subjects.
The majority of event-related studies with a decision component
(69%) used constant impulses convolved with the canonical HRF to
represent the decision events (Fig. 1E); 11% used the variable impulse
model to account for parametric modulations in their design,14% used
the constant epoch model, and 5% used the variable epoch approach.
Moreover, the large majority (95%) of event-related designs assumed
that there were no significant differences in the shape of the HDR
between trials or trial types; 84% assumed there were no significant
differences in either shape or intensity of the HDR. The mean RT of
studies that incorporated temporal information was 1270 ms (s.d. =
727 ms, min = 680 ms, max = 2560 ms). The mean RT for studies that
did not incorporate temporal informationwas 1036 ms (s.d. = 529 ms,
min = 256 ms, max = 2100 ms). There was no significant difference
between the two groups (T-test, p = 0.35). There was a broad
distribution of software packages used with no apparent systematic
differences in how regressors were modeled between fMRI analysis
packages (Fig. 1F).

Simulations

We tested the null hypothesis that the constant epoch and the two
impulse models were as effective as the variable epoch model at
detecting brain activity that varies in duration from trial to trial (i.e.
the type of activity generated in decision-making experiments). The
effectiveness of the four regression models to detect neural activity
was computed by comparing the fraction of true positives (i.e. power)
and false positives for each model. Fig. 3A shows that the variable
epoch model has greater statistical power for detecting time-varying
neural activity. This was necessarily the case, as the simulated true
response was identical to the regressor used in the variable epoch
model. However, the critical issue was whether the variable epoch
model produced significantly better results than the other models in
the presence of physiological noise. At a correlation coefficient of 0.1 (a
plausible value for a robust fMRI response; Fig. 3A), the power of the
variable epochmodel was 0.55, while the constant impulsemodel was
only 0.23 — a 58% reduction in power. Furthermore, the modulator
regressor from the variable impulse model had the lowest power of
any of the regressors (power = 0.18), a 67% reduction compared to the
variable epoch model, suggesting that impulse modulation did not
provide an adequate model to capture activity related to variable
duration events. The constant epoch model performed only slightly
better than the constant impulse model (power = 0.28), a 49%
reduction compared to the variable epoch model. The results were
reversed when the variable epoch model was used to detect constant
duration activity; that is, the constant impulse model outperformed
the variable epoch model when detecting a constant neural process
(Fig. S2). The false positive rate was controlled appropriately at p =
0.05 in all analyses andwas not affected bymodel type (Fig. 3B). These
data suggest that for event-related designs, the type of model matters
and that commonly used approximations, which ignore durations of
events, are less able to detect time-varying BOLD activity than has
been previously appreciated.

Since the variable impulse model has one more regressor than the
other models, it is more flexible at fitting the data than the single
regressor models. We used an F-test to determine if the two-regressor
variable impulse model had more detection power than the one-
regressor variable epoch model. The variable epoch model had higher
power than the variable impulsemodel despite having one less degree
of freedom (Fig. 3C). The false positive rate was controlled appro-
priately at p = 0.05 (Fig. 3D).

These simulations show that even for events that have a mean
duration of less than 1.0 s, the procedure used to model trial-to-trial
variability has a substantial impact on statistical power. This is also
true for durations typical of simple RTs, which have mean durations
significantly smaller than choice RTs (though the effect diminishes as
RTs become smaller; Fig. S3). Two main factors explain these results.



Fig. 3. Detection power and false positive rate for each model. Each model was used to detect a simulated time-varying signal. Each data point consisted of 10,000 simulated runs. (A)
The variable epoch model (blue) has significantly higher detection power as a function of effect size (Pearson's correlation coefficient) than all the other models. Although the
improvement in power is a function of run length, the results provide an estimate of the relative cost of using the other models in detecting time-varying signals. (B) All the models
have similar false positive rates. (C) The variable impulse model (two regressors; green) has higher power than the variable epoch model (single regressor; blue) for small effect sizes.
However, this comes at a substantial cost due to an increase in false positive rate (D). Error bars represent standard deviation (note: error bars are too small to be visible in A and C).
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First, the constant impulse and constant epoch models assume
constant HDR amplitudes for all trials. While a seemingly reasonable
simplification, our results show that ignoring trial-to-trial variations
even for brief events results in substantial mismodeling. Secondly, the
impulse models (constant and variable) assume that the duration of
the neural activity is not different from zero for brief events. Thus,
although the variable impulse model allows the amplitude of the HDR
to bemodulated in height, the shape of the HDR for all trials in the two
models is required to remain constant. Our results suggest that trial-
to-trial variations in duration are not fully captured by modulation of
amplitude.

Fig. S4 and Fig. 4 illustrate in more detail why the models are not
equivalent. Fig. S4 shows the size of the difference between the
predicted and actual response when modeling a variable duration
neural process (Fig. S4A) as if it was a constant impulse (Fig. S4B); the
two models make quite different predictions about the shape and
amplitude of the fMRI time series (Fig. S4C). Fig. 4 describes the
differences in the shape of the HDR during changes in stimulus
amplitude (red) and stimulus duration (blue). Fig. 4A shows predicted
responses after convolutionwith a canonical HRF for events ranging in
amplitude and duration from 0 to 4000 ms (in steps of 500 ms). The
graph shows that modulations in stimulus amplitude and duration
produce divergent responses—even after convolving very brief events
with a canonical HRF. For a stimulus duration of 1.0 s, the correlation
between the impulse response and the epoch response is R2 = 0.92,
whereas for a stimulus duration of 3.0 s, the correlation is much lower,
R2 = 0.54 (Fig. 4B).

To compute the relative contribution of mismodeling shape vs.
amplitude of the HDR, we computed the mean percent variance
explained by the impulse model across trials when the durations are
gamma distributed in the same way as our RT distribution. In our
simulations, mismodeling of shape accounted for 12% of the
mismodeling effect; mismodeling of amplitude accounted for the
other 88%.

Imaging

Based on our simulations, we developed several predictions that
we tested using fMRI. First, if the convolution of neural activity with a
HRF is an accurate model of HDRs, then duration-modulation and
amplitude modulation should generate different HDR shapes (Fig. 4A).
Specifically, amplitude modulation should vary the rise time of the
HDR, with more intense stimuli resulting in more rapid signal
increases and greater evoked amplitudes. Duration-modulation, by
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contrast, should result in a quickly saturating (constant) rise time, but
a linearly increasing time-to-peak for the HDR. This hypothesis was
tested in Experiment 1. Second, the variable epoch model should be
more powerful than other models at detecting variable duration,
visually evoked activity in the presence of physiological noise,
resulting in a significantly greater number of suprathreshold voxels
in occipital cortex. Our third and fourth predictions were that the
variable epoch model should result in activation patterns with higher
reliability across runs and lower inter-subject variability than other
models. These predictions were tested in Experiment 2.



Fig. 5. Detection power and consistency of detected response. (A) When a neural process (in this case a flashing checkerboard) has variable duration across trials, the variable epoch
model detects a greater number of significant voxels on each 5.5 min run than the othermodels. (B) The same pattern is true at the group level (mixed-effects analysis; n=8 subjects).
The variable impulsemodel has amuch less consistent response across runs and across subjects, resulting in a large drop in sensitivity at the group level. (C) An example of themixed-
effects group level activation maps demonstrates that the variable epoch model showed higher Z-statistics and detects many more significant voxels than the other models. The
unthresholded activation maps show that the variable impulse model has a similar, but non-significant, spatial distribution of activity in the visual cortex.
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Experiment 1 — Dissociating signal intensity from duration
As the stimulus contrast increased, the amplitude of the response

increased (Fig. 4C, red). More importantly, as the model in Fig. 4A
predicts, the initial slope increased linearly (Fig. 4D, red; linear
regression, slope = 5.8 × 10−5, p = 0.0050, intercept = 0.0011, p =
0.0093, df = 52) but the time to reach maximum BOLD response did
not change (Fig. 4E, red; linear regression, slope = − 0.0059, p = 0.70,
intercept = 3.2, p = 2 × 10− 13, df = 47). The reverse pattern was evident
when increasing stimulus duration. Although the amplitude increased
with stimulus duration (Fig. 4C, blue; polynomial regression, quad-
ratic term = − 0.0010, p = 0.0037, linear term = 0.0044, p = 0.0006,
intercept = 0.0027, p = 0.84, df = 47), the initial slope reached a
Fig. 4. Dissociating changes in intensity from changes in duration. (A) The canonical HRF w
duration (0–4000 ms in 500 ms steps; blue). When only intensity is modulated, the shape o
However, when duration is the critical variable, both the shape and height of the response var
model (or HRF) and the variable duration HDRs. The percent of temporal variance explaine
neural process is 3 s, the impulse model can only explain half of the variance in the data. (C) D
contrast (5%,10%, 20%, 40%) with a constant duration (0.25 s, left panel) and variable duration
peak intensity for each trial type. (D) As predicted by the LTI model in (A), the slope of the
durations greater than ~1.3 s, the slope of the HDRs in (C, blue) remains constant (blue). Error
HDRs reach their peak intensity remains constant (red), as predicted by the LTI model in (A
represent standard error.
constant value at a stimulus duration of 1.3 s, but showed a linearly
increasing time of peak response (Fig. 4E, blue; linear regression,
slope = 0.70, p = 0.00032, intercept = 2.9, p = 1 × 10−14, df = 50).

Experiment 2 — Sensitivity and consistency of GLM analysis
We compared the performance of each of the regression models to

detect visually evoked responses in occipital cortex by comparing the
number of significant voxels generated by each model. We also
compared the consistency of the results generated by each model
using three measures: (1) peak Z-score across runs, (2) reliability of
the spatial activation pattern across runs (assessed with Cronbach's
alpha), and (3) inter-subject variability of the estimated HRF (assessed
as convolved with either an impulse of variable height (red) or an epoch of variable
f the HDR is constant, varies only in height, and is identical to the theoretical HRF (red).
y (blue). (B)We calculated the Pearson's correlation coefficient, R2, between the impulse
d by the impulse model decreases as a function of duration. When the duration of the
ata from the visual cortex of a single subject viewing flashing checkerboards of variable
(0.25 s, 0.75 s, 1.3 s, 3.5 s) but constant intensity (5%, right panel). The circles indicate the
HDRs in (C, red) increases linearly with stimulus intensity (red). However, for stimulus
bars represent standard error. (E) As stimulus intensity increases, the time at which the
). In contrast, the time to peak is linearly related to stimulus duration (blue). Error bars



Fig. 6. Quality of the HRF estimate. (A) The variable epoch model generates a mean HRF
estimate across subjects with lower variance than the constant impulse model. Shaded
regions represent one standard deviation. (B) Levene's Test for Equality of Variance was
used to determine whether the variances were significantly different. The dotted line
represents the significance threshold, set at pb0.05, F(1,14)=4.6. The majority of the
time points have significantly higher variance for the impulse HRF estimate than for the
variable epoch HRF estimate. Note that the crossover points at 7.5 s and 14.2 s are the
only regions where the variance for the epoch HRF exceeds the variance for the impulse
HRF.
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with Levene's Test). We predicted that the variable epoch model
would have significantly better fits to the data, a more consistent
distribution of active voxels, and lower variance in the HRF estimate.

Fig. 4A shows that the variable epoch model was able to detect
more active voxels than the other models across a range of thresholds.
We counted the number of significant voxels detected within the
visual cortex for each functional run and tested whether the epoch
model detected significantly more active voxels (paired t-test,
significant at p b 0.05, df = 7). At a voxel detection threshold of p =
0.01, the variable epoch model detected an average of 525 (s.e. = 84)
active voxels per run, compared to only 383 (s.e. = 83, p = 0.0005)
voxels for the constant impulse model (Fig. 5A). This comprises a 27%
decrease in the number of detected voxels. The constant epoch model
detected 31% fewer voxels than the variable epoch model (mean
detected = 361, s.e. = 78, p = 0.0008). The constant impulse regressor
and modulator generated 406 (s.e. = 86, p = 0.0006) and 250 (s.e. = 68,
p = 0.0005) activated voxels, respectively. The variable epoch model
also detected more voxels than the F-test of the variable impulse
model (mean detected = 380, s.e. = 56, p = 0.0014, 28% reduction; Fig.
S5). Thus, for individual functional runs, the variable epoch model
detected significantly more active voxels than all other models
(including the F-test of the variable impulse regressors) at all
detection threshold levels (p-values).

The improvement in performance of the variable epoch model also
generalized to the group level, across subjects. At a threshold of p = 0.01,
the variable epochmodel detected 8793 significant voxels compared to
only 6520 voxels (26% decrease) for the constant impulse model and
5694 voxels (38% decrease) for the constant epoch model (Fig. 5B). The
largest decrease in power was demonstrated by the two-regressor,
variable impulse model; the constant impulse and modulator
regressors generated only 147 and 473 significantly activated voxels
(Fig. 5B). The corresponding group activation maps (thresholded at p =
0.01 and unthresholded) are illustrated in Fig. 5C. This large reduction
in sensitivity of the variable impulse model at the group level is due to
the decreased consistency of the spatial activation pattern at the
individual level for the variable impulse model when compared with
the variable epoch model (see Cronbach's alpha below). The primary
reason for the decreased consistency at the individual level is that the
variable impulse model attempts to account for a single source of
temporal variance as if it were two independent sources: a constant
intensity, zero duration component and a zero duration, variable
intensity component with intensity proportional to duration. These
two arbitrary transformations produce regressors that do not closely
match the data, resulting in low power for each regressor.

To test for differences in the false positive rate between themodels,
we counted the number of significant voxels detected within the
ventricles. Ventricular masks were created by thresholding the partial
volume maps such that gray and/or white matter accounted for no
more than 5% of the volume of each CSF voxel. The number of active
voxels within each mask was counted and normalized by the total CSF
volume. There were no significant differences between the variable
epoch regressor and any of the other regressors (paired t-test, p = 0.58
for constant epoch model, p N 0.93 for all others). However, the F-test
for the variable impulse model detected 40.8% more significant voxels
in the ventricles and surrounding CSF than the variable epoch model
(paired t-test, p = 0.039).

Since the “true” activation pattern is unknown, it is possible that
the greater number of significant voxels detected by the variable
epochmodel may be due to factors other than greatermodel detection
power. An additional test of model quality is the degree of consistency
in the detected brain activity. We evaluated the consistency of the
brain activation generated by each model in three ways: (1)
significance of activation, (2) Cronbach's alpha, and (3) variability of
the HRF estimate.

The variable epoch model generated higher statistical significance
values (Z-scores) compared to the other models. The mean peak Z-
score across runs was determined for the visual cortex of each subject.
The mean peak Z-score was significantly higher for the epoch model
using a paired t-test (p b 0.05, df = 7; variable epochmodel: μ = 6.4, σ =
1.7; constant epoch model: μ = 5.4, σ = 1.5, p = 0.0007; constant
impulse model: μ = 5.6, σ = 1.5, p = 0.019; variable impulse, constant
regressor: μ = 5.8, σ = 1.7, p = 0.0030; variable impulse, modulator: μ =
4.8, σ = 0.5, p = 0.0051), indicating that the variable epoch model
explains a greater proportion of the variance than the other models.
The difference in mean peak Z-scores also extended to the group
activation map (variable epoch model: μ = 5.7; constant epoch model:
μ = 4.9; constant impulse model: μ = 4.8; variable impulse, constant
regressor: μ = 2.5; variable impulse, modulator: μ = 2.6).

To evaluate the consistency of the spatial activation pattern across
runs for each subject, we compared Cronbach's alpha (Cronbach,1951)
of the unthresholded Z-scores.Within the occipital cortex, the variable
epoch model generated a more consistent spatial pattern of
activation (α = 0.74) across runs than the other models (constant
impulse α = 0.62; constant epoch α = 0.56; variable impulse, constant
regressor α = 0.64, modulator α = 0.59). Higher alpha values for the
variable epoch model, as compared with the other models, were
significant at p b 0.05 using a paired t-test (Table S1).

As a final measure of consistency, we compared the variance of the
estimated HRF. The constant impulsemodel is often used to estimate a
custom HRF for individual subjects. It is commonly assumed that the
theoretical HRF is equal to the measured HDR. However, as was
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demonstrated in Fig. 4, the HRF and HDR are equal only when the
stimulus duration is close to zero. To determine the effect of
estimating the HRF by treating time-varying signals as impulses, we
used FLOBS, a basis set constructed to generate plausible HRF shapes
(Woolrich et al., 2004). Fig. 6A shows that the variance of the
estimated HRF using the constant impulse model (red) is dramatically
larger than the variable epoch model (blue). Fig. 6B shows that this
difference in variance was significant for most of the time points using
Levene's Test for Equality of Variance (Levene, 1960).

Discussion

In fMRI studies that use block designs, the regressors are almost
universally constructed as boxcar functionswith block durations equal
to the duration of the stimulus. Regressors that are designed in this
way are meant to detect neural activity with onset and offset times
that match the stimulus. As blocks shorten to 4 s or less, the
convention in the field is to switch to using impulse functions, rather
than to continue shortening blocks to match the length of the
stimulus. The resulting regressor assumes that the hemodynamic
impulse response function (HRF) and the hemodynamic response
(HDR) are equal, and that every trial produces an identical BOLD
response. Although the variable epoch method is rarely used (Fig. 1E),
it has several advantages. First, the variable epoch model provides
higher detection power for neural activity whose durations vary with
a known psychophysical parameter (such as RT). Second, in such
regions, the variable epoch method generates higher Z-statistics,
more reliable patterns of activation, and HRF estimates with lower
inter-subject variability. Finally, the variable epoch model is a more
physiologically plausible representation of decision-related activity —

neuronal activity bursts have an appreciable (non-zero) duration that
in many cases covaries with response time.

Convolving variable duration epochswith a canonical HRF results in
HDRs that are different from those generated by convolving impulses
(Figs. 4 and S3). A critical issue is whether this theoretical difference is
detectable under conditions of physiological noise. It has been argued
that the HDR to a short duration neural process is not appreciably
different from the HRF (Henson, 2003) due to high hysteresis
(temporal smoothness) in the BOLD response (Zarahn et al., 1997).
However, accounting for inter-subject variability in the shape of the
HRF by using a subject's own HRF in the regression model produces
more robust statistical parametric maps than using the canonical HRF
(Aguirre et al., 1998; Handwerker et al., 2004). Furthermore,
mismodeling of the HRF, as well as temporal mismatches between
the neural activity and the regression model, can result in significant
decrements in power (Hernandez et al., 2002). These results suggest
that differences in the shape of the HDR are detectable and important
even under conditions of high auto-correlated noise. Our imaging data
demonstrate that even for durations as brief as a few hundred
milliseconds, modulation of intensity or duration results in different
shapes of the BOLD response (Fig. 4). Explicitly modeling these
differences increases statistical power (Figs. 3 and S2) and can result in
dramatic increases in the number of voxels detected (Fig. 5).

Another weakness of the constant impulse model is its prediction
that the size of theHDR remains constant across events.While thismay
be a good model for passively viewed stimuli of equal durations, it is
unlikely to generate optimal results when a response is required from
the subject and when psychophysical measures can be incorporated
into the regression model. Even for simple reaction-time tasks in
which a subject presses a button in response to a signal onset, response
times can vary by hundreds of milliseconds (Menon et al., 1998;
Verhaeghen et al., 2006; Verhaeghen et al., 2003). Recordings from
single neurons have shown that the time taken to make a response
depends on neural processing times in decision-related brain regions
(Janssen and Shadlen, 2005; Maimon and Assad, 2006; Ratcliff et al.,
2007; Schall, 2003; Shadlen and Newsome, 2001; Snyder et al., 2006).
Furthermore, positive correlations between decision time and the
onset of the BOLD response have been demonstrated using fMRI
(Connolly et al., 2005; Formisano et al., 2002; Kruggel et al., 2000;
Menon et al.,1998). Thus, since the time necessary to perform amental
operation has variable, finite duration and is related to neural
processing time, it is not surprising that time-varying decision-related
activity may be better detected by a RT-related, variable epoch
regressor than a non-varying, zero duration impulse regressor.

Studies that account for decision time usually do so by modulating
the height of the impulse response (Buchel et al., 1998; Friston, 2003;
Henson, 2003; Josephs and Henson, 1999). If the true neural activity
varies in time, the variable impulse model significantly underper-
forms the variable epoch model when used for signal detection
despite the extra degree of freedom (Figs. 5 and S5). Thus, the
additional flexibility provided by the modulator is not sufficient to
accurately represent time-varying neural activity.

It is important to point out that response time is merely an
estimate of the time necessary to make a decision. Specifically, it
provides an upper limit on the duration of the neural activity that is
involved in forming the response. It may be possible to generate more
precise bounds on the decision period by using psychophysical models
or electrophysiological recording techniques. For example, RT tasks
can provide estimates of the durations of the sensory, motor, and
choice components of the decision (Posner, 1978; Sternberg, 2001)
whereas EEG can provide estimates of different neural components
that can then be included in the regressionmodel (Gerson et al., 2005;
Goldman et al., 2002; Goncalves et al., 2006; Osman et al., 1992).

Alternative methods of modeling fMRI data

Although the variable epoch model outperforms the variable
impulse model when detecting known time-varying signals, the
flexibility of the variable impulse model could potentially allow a
better fit to the data when the nature of the time-varying signal is
unknown. In fact, flexibility can be maximized by adding a series of
orthogonal basis functions to the regression design matrix. Deciding
whether to use a single, variable epoch regressor or multiple,
orthogonal regressors for modeling time-varying signals is deter-
mined by the specific aims of the study.

There are two common aims when performing regression analysis:
prediction and detection. Some studies are interested in developing
models that can make accurate predictions of the brain's response.
Because a predictive model is not known a priori, it has to be
determined from the data itself using an optimized set of basis
functions. Optimized basis functions are typically orthogonalized, but,
as a result, do not necessarily represent physiologically plausible
neural responses (e.g. a series of FIR filters, or sinusoids, or a basis set
created from the principal components of HDRs such as FLOBS).

In other studies, an a priori cognitive or neural model is assumed to
be true and a set of basis functions is created that represents the
expected physiological response in the brain. In this case, the
regression model is used to detect voxels that have a similar temporal
pattern as predicted by the cognitive/neural model. Such voxels are
said to be involved in the computation of the cognitive or neural
process that generated the model. Importantly, such models are not
orthogonalized because it is important to maintain equivalence
between the cognitive/neural model and the regression model in
order to provide explanatory power. However, it is possible to add
‘nuisance’ regressors that reduce the residual, but that are not used for
inference and that do not affect the explanatory power of the
cognitive/neural model. For example, the main regressor of interest
is often orthogonalized with respect to some other variable, for
example, head motion parameters to account for non-linear effects of
head motion, temporal derivatives to account for constant temporal
offsets of the model, or even a constant epoch regressor to improve
the specificity of a variable epoch regressor.
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Moreover, when regression is used for signal detection, the shape
of each response-related regressor should match the predicted
response-related neural activity. Thus, for certain cases, the impulse
model may be optimal; in fact, the detection of constant duration
activity requires a regressor consisting of boxcars or impulses of
constant duration. For example, stimulus onsets and offsets, as well as
simple motor responses, are best modeled by impulse functions. A
passively observed two-second tone or a three-second sinusoidal
grating is best modeled by a two- and three-second constant epoch,
respectively. However, the majority of event-related studies make
inferences about decision-making activity (Fig. 1B). Since decision
processes have variable duration, incorporating estimates of RT (or
other temporal measures of the decision process) into fMRI analyses
using the variable epoch approach can produce improvements in
power, reliability, and interpretability.
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